
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Iteration I1: Authenticating Users
Building a user administration system is a common task in web applications.
Rails provides a generator to help you get started. The code it generates is a
good starting point, and takes care of important details like storing passwords
securely. It builds upon sessions, mailers, and jobs which we’ve seen in pre-
vious chapters.

We start by running the generator:

depot> bin/rails generate authentication

This creates three models: Session, User, and Current. It creates controllers for
sessions and passwords, and a controller concern for authentication. Finally,
it creates views for passwords and their associated mailer. The one task it
leaves to you the task of defining the user. We could create this from scratch,
but we’ll use the scaffold generator to get us started, and tell it to not modify
what was produced by the authentication generator. The existing User model
defines the user’s email address and password, we just need to add the user’s
name.

depot> bin/rails generate scaffold User \
name:string email_address:string password:digest \
--skip-collision-check --skip

We declare the password as a digest type, which is another one of the nice
extra touches that Rails provides.

Because we skipped the collision check, we need to manually update the
migration:

rails80/depot_r/db/migrate/20241021000011_create_users.rb
class CreateUsers < ActiveRecord::Migration[8.0]

def change
create_table :users do |t|
t.string :name, null: false➤

t.string :email_address, null: false
t.string :password_digest, null: false

t.timestamps
end
add_index :users, :email_address, unique: true

end
end

And then run the migration:

depot> bin/rails db:migrate

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/db/migrate/20241021000011_create_users.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

Next, we have to flesh out the user model:

rails80/depot_r/app/models/user.rb
class User < ApplicationRecord

validates :name, presence: true, uniqueness: true➤

validates :email_address, presence: true, uniqueness: true➤

has_secure_password
has_many :sessions, dependent: :destroy

normalizes :email_address, with: ->(e) { e.strip.downcase }
end

We check that the name and email addresses are present and unique (that
is, no two users can have the same name or email address in the database).

Then there’s the mysterious has_secure_password().

You know those forms that prompt you to enter a password and then make
you reenter it in a separate field so they can validate that you typed what you
thought you typed? That’s exactly what has_secure_password() does for you: it
tells Rails to validate that the two passwords match.

A user is defined to have many sessions, and those sessions are to be
destroyed when the user is destroyed. Finally, email addresses are normalized
to lowercase before being stored in the database.

Finally, you need to restart your server as a new gem was installed by the
authentication generator.

With this code in place, we have the ability to present both a password and
a password confirmation field in a form, as well as the ability to authenticate
a user, given a name and a password. Not bad for two commands and three
lines of code.

But now we have an embarrassing problem: there are no administrative users
in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command
line. If you invoke the rails console command, Rails invokes Ruby’s irb utility,
but it does so in the context of your Rails application. That means you can
interact with your application’s code by typing Ruby statements and looking
at the values they return.

We can use this to invoke our user model directly, having it add a user into
the database for us:

depot> bin/rails console
Loading development environment (Rails 8.0.0.rc1)
work(dev)* User.create(name: "dave",

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/app/models/user.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

work(dev)> email_address: "dave@example.org", password: "secret")
work(dev)> exit

With this in place, we can now log in as the user dave with the password secret:

Home

Questions

News

Contact

Sign in
dave@example.org

••••••

Sign in Forgot password?

If the blue button offends you, the file to change is app/views/sessions/new.html.erb.

You can also use this interface to send a password reset email. If you haven’t
set up email you can configure Rails in development mode to save the emails
into files by editing the config/environments/development.rb file.

rails80/depot_r/config/environments/development.rb
Save emails as files in tmp/mails➤

config.action_mailer.delivery_method = :file➤

We also have a small problem in that all of our controller tests are now failing.
We can fix this by defining a method in the test helper to log in as a user:

rails80/depot_r/test/test_helper.rb
ENV["RAILS_ENV"] ||= "test"
require_relative "../config/environment"
require "rails/test_help"

module ActiveSupport
class TestCase

Run tests in parallel with specified workers
parallelize(workers: :number_of_processors)

Setup all fixtures in test/fixtures/*.yml for all tests in
alphabetical order.

fixtures :all

Add more helper methods to be used by all tests here...
def login_as(user)➤

get users_path➤

post session_path, params: {➤

email_address: user.email_address,➤

password: "password"➤

}➤

end➤

end
end

• Click HERE to purchase this book now. discuss

Iteration I1: Authenticating Users • 5

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/config/environments/development.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/test_helper.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/passwords/new

And then each controller test needs to be updated to call this method:

rails80/depot_r/test/controllers/carts_controller_test.rb
setup do

@cart = carts(:one)
login_as users(:one)➤

end

rails80/depot_r/test/controllers/line_items_controller_test.rb
setup do

@line_item = line_items(:one)
login_as users(:one)➤

end

rails80/depot_r/test/controllers/orders_controller_test.rb
setup do

@order = orders(:one)
login_as users(:one)➤

end

rails80/depot_r/test/controllers/products_controller_test.rb
setup do

@product = products(:one)
@title = "The Great Book #{rand(1000)}"
login_as users(:one)➤

end

rails80/depot_r/test/controllers/store_controller_test.rb
def setup

login_as users(:one)➤

end

rails80/depot_r/test/controllers/users_controller_test.rb
setup do

@user = users(:one)
login_as @user➤

end

Once the tests are passing again, we can move on to the next step: adding
the ability to administer users.

Administering Our Users
Now we turn our attention to the scaffolding we created for our users. Let’s
go through it and make some tweaks as necessary.

We start with the controller. It defines the standard methods: index(), show(),
new(), edit(), create(), update(), and destroy(). By default, Rails omits the unintelligible
password hash from the view. This means that in the case of users, there
isn’t much to show() except a name and an email. So let’s avoid the redirect to

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/carts_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/line_items_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/orders_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/store_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/users_controller_test.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

showing the user after a create operation. Instead, let’s redirect to the user’s
index and add the username to the flash notice:

rails80/depot_r/app/controllers/users_controller.rb
def create

@user = User.new(user_params)

respond_to do |format|
if @user.save

format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully created." }➤

format.json { render :show, status: :created, location: @user }
else

format.html { render :new, status: :unprocessable_entity }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

Let’s do the same for an update operation:

def update
respond_to do |format|

if @user.update(user_params)
format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully updated." }➤

format.json { render :show, status: :ok, location: @user }
else

format.html { render :edit, status: :unprocessable_entity }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

While we’re here, let’s also order the users returned in the index by name:

def index
@users = User.order(:name)➤

end

Now that the controller changes are done, let’s attend to the view. We need
to update the form used both to create a new user and to update an existing
user. Note this form is already set up to show the password and password
confirmation fields. We’ll make a few aesthetic changes so the form looks nice
and matches the look and feel of the site.

rails80/depot_r/app/views/users/_form.html.erb
<%= form_with(model: user, class: "contents") do |form| %>

<% if user.errors.any? %>

• Click HERE to purchase this book now. discuss

Iteration I1: Authenticating Users • 7

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/app/controllers/users_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_r/app/views/users/_form.html.erb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-lg mt-3">

<h2><%= pluralize(user.errors.count, "error") %>
prohibited this user from being saved:</h2>

<% user.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<h2>Enter User Details</h2>➤
➤

<div class="my-5">
<%= form.label :name, 'Name:' %>➤

<%= form.text_field :name, class: "input-field" %>➤

</div>

<div class="my-5">
<%= form.label :email_address %>
<%= form.text_field :email_address, class: "input-field" %>➤

</div>

<div class="my-5">
<%= form.label :password, 'Password:' %>➤

<%= form.password_field :password, class: "input-field" %>➤

</div>

<div class="my-5">
<%= form.label :password_confirmation, 'Confirm:' %>➤

<%= form.password_field :password_confirmation,➤

id: :user_password_confirmation,➤

class: "input-field" %>➤

</div>

<div class="inline">
<%= form.submit class: "rounded-lg py-3 px-5 bg-blue-600 text-white

inline-block font-medium cursor-pointer" %>
</div>

<% end %>

Let’s try it. Navigate to http://localhost:3000/users/new. For a stunning example of
page design, see the following screenshot.

• 8

• Click HERE to purchase this book now. discuss

http://localhost:3000/users/new
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

Home

Questions

News

Contact

New user
Enter User Details

Name:

Email address

Password:

Confirm:

Create User Back to users

After Create User is clicked, the index is redisplayed with a cheery flash notice.
If we look in our database, you’ll see that we’ve stored the user details:

depot> sqlite3 -line storage/development.sqlite3 "select * from users"
id = 1

name = dave
email_address = dave@example.org

password_digest = $2a$12$p1HwU98TtNu.j/UBv74e4.ljjpvWdPk4tN6kTkWxp1QVV7UyR73em
created_at = 2024-10-24 14:43:27.934633
updated_at = 2024-10-24 14:43:27.934633

id = 2
name = sam

email_address = sam@example.org
password_digest = $2a$12$UQrQxRNRatkzGpwhnUQ3X.QjUQr57bcCui01wXYMjlosZO0rIzLLK

created_at = 2024-10-24 14:43:35.232745
updated_at = 2024-10-24 14:43:35.232745

As we’ve done before, we need to update our tests to reflect the validation and
redirection changes we’ve made. First we update the test for the create() method:

rails80/depot_r/test/controllers/users_controller_test.rb
test "should create user" do

assert_difference("User.count") do
post users_url, params: { user: {➤

email_address: "sam@example.org",➤

name: "sam",➤

password: "secret",➤

password_confirmation: "secret" } }➤

end

assert_redirected_to users_url➤

end

• Click HERE to purchase this book now. discuss

Iteration I1: Authenticating Users • 9

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/controllers/users_controller_test.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/users

Because the redirect on the update() method changed too, the update test also
needs to change:

test "should update user" do
patch user_url(@user), params: { user: {

email_address: @user.email_address,
name: @user.name,
password: "secret",
password_confirmation: "secret" } }

assert_redirected_to users_url➤

end

We need to update the test fixtures to add names to the users.

rails80/depot_r/test/fixtures/users.yml
<% password_digest = BCrypt::Password.create("password") %>

one:
name: one➤

email_address: one@example.com
password_digest: <%= password_digest %>

two:
name: two➤

email_address: two@example.com
password_digest: <%= password_digest %>

Note the use of dynamically computed values in the fixture, specifically for the
value of password_digest. This code was also inserted by the scaffolding command
and uses the same function that Rails uses to compute the password.1

At this point, we can administer our users; and only authenticated users can
access our site. Now we need to open things up so that customers can access
the store.

1. https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_r/test/fixtures/users.yml
https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

