
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


Iteration A1: Creating the Product Maintenance
Application
At the heart of the Depot application is a database. Getting this installed
and configured and tested before proceeding will prevent a lot of headaches.
If you’re not certain about what you want, take the defaults, and it will go
easily. If you know what you want, Rails makes it easy for you to describe
your configuration.

For this project, let’s make use of the Tailwind CSS1 framework, which enables
you to make pretty websites without authoring any CSS. We’ll do so by
specifying an additional option when we create our application, and as you’ll
shortly see it will also affect how we start our server during development.

Creating a Rails Application
In Creating a New Application, on page ?, you saw how to create a new Rails
application. We’ll do the same thing here. Go to a command prompt and type
rails new followed by the name of our project, and then add the option to make
use of the Tailwind CSS framework. Here, our project is called depot, so make
sure you’re not inside an existing application directory, and type this:

work> rails new depot --css tailwind

We see a bunch of output scroll by. When it has finished, we find that a new
directory, depot, has been created. That’s where we’ll be doing our work:

work> cd depot
depot> ls -p
Dockerfile README.md config/ log/ test/
Gemfile Rakefile config.ru public/ tmp/
Gemfile.lock app/ db/ script/ vendor/
Procfile.dev bin/ lib/ storage/

Of course, Windows users need to use dir /w instead of ls -p.

Creating the Database
For this application, we’ll use the open source SQLite database (which you’ll
need if you’re following along with the code). We’re using SQLite version 3 here.

SQLite 3 is the default database for Rails development and was installed along
with Rails in Chapter 1, Installing Rails, on page ?. With SQLite 3, no steps
are required to create a database, and we have no special user accounts or

1. https://tailwindcss.com/

• Click  HERE  to purchase this book now.  discuss

https://tailwindcss.com/
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


passwords to deal with. So now you get to experience one of the benefits of
going with the flow (or, convention over configuration, as the Rails folks
say...ad nauseam).

If it’s important to you to use a database server other than SQLite 3, the
commands to create the database and grant permissions will be different.
You can find some helpful hints in the database configuration section of
Configuring Rails Applications in the Ruby on Rails Guides.2

Generating the Scaffold
Back in our initial guess at application data on page ?, we sketched out the
basic content of the products table. Now let’s turn that into reality. We need to
create a database table and a Rails model that lets our application use that
table, a number of views to make up the user interface, and a controller to
orchestrate the application.

So let’s create the model, views, controller, and migration for our products table.
With Rails, you can do all that with one command by asking Rails to generate
a scaffold for a given model. Note that on the command line that follows, we
use the singular form, Product. In Rails, a model is automatically mapped to a
database table whose name is the plural form of the model’s class. In our
case, we ask for a model called Product, so Rails associates it with the table
called products. (And how will it find that table? The development entry in con-
fig/database.yml tells Rails where to look for it. For SQLite 3 users, this’ll be a
file in the storage directory.)

Note that the command is too wide to fit comfortably on the page. To enter a
command on multiple lines, put a backslash as the last character on all but
the last line, and you’ll be prompted for more input. Windows users need to
substitute a caret (^) for the backslash at the end of the first line and a
backslash for the forward slash in bin/rails:

depot> bin/rails generate scaffold Product \
title:string description:text image:attachment price:decimal

invoke active_record
create db/migrate/20241021000001_create_products.rb
create app/models/product.rb
invoke test_unit
create test/models/product_test.rb
create test/fixtures/products.yml
invoke resource_route
route resources :products

invoke scaffold_controller

2. http://guides.rubyonrails.org/configuring.html#configuring-a-database

• 4

• Click  HERE  to purchase this book now.  discuss

http://guides.rubyonrails.org/configuring.html#configuring-a-database
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


create app/controllers/products_controller.rb
invoke tailwindcss
create app/views/products
create app/views/products/index.html.erb
create app/views/products/edit.html.erb
create app/views/products/show.html.erb
create app/views/products/new.html.erb
create app/views/products/_form.html.erb
create app/views/products/_product.html.erb
invoke resource_route
invoke test_unit
create test/controllers/products_controller_test.rb
create test/system/products_test.rb
invoke helper
create app/helpers/products_helper.rb
invoke test_unit
invoke jbuilder
create app/views/products/index.json.jbuilder
create app/views/products/show.json.jbuilder
create app/views/products/_product.json.jbuilder

The generator creates a bunch of files. The one we’re interested in first is the
migration one, namely, 20241021000001_create_products.rb.

A migration represents a change we either want to make to a database as a whole
or to the data contained within the database, and it’s expressed in a source file
in database-independent terms. These changes can update both the database
schema and the data in the database tables. We apply these migrations to update
our database, and we can unapply them to roll our database back. We have a
whole section on migrations starting in Chapter 23, Migrations, on page ?. For
now, we’ll just use them without too much more comment.

The migration has a UTC-based timestamp prefix (20241021000001), a name
(create_products), and a file extension (.rb, because it’s Ruby code).

The timestamp prefix that you see will be different. In fact, the timestamps
used in this book are clearly fictitious. Typically, your timestamps won’t be
consecutive; instead, they’ll reflect the time the migration was created.

Applying the Migration
Although we’ve already told Rails about the basic data types of each property,
let’s refine the definition of the price to have eight digits of significance and
two digits after the decimal point:

rails80/depot_a/db/migrate/20241021000001_create_products.rb
class CreateProducts < ActiveRecord::Migration[8.0]

def change
create_table :products do |t|

• Click  HERE  to purchase this book now.  discuss

Iteration A1: Creating the Product Maintenance Application • 5

http://media.pragprog.com/titles/rails8/code/rails80/depot_a/db/migrate/20241021000001_create_products.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


t.string :title
t.text :description
t.decimal :price, precision: 8, scale: 2➤

t.timestamps
end

end
end

Since we are defined an attachment we need to install the tables that Active
Storage uses to track the attachments. This only needs to be done once per
database. We do this by running the following command:

depot> bin/rails active_storage:install
Copied migration 20241021000002_create_active_storage_tables.active_storage.rb

from active_storage_attachments

Now that we’re done with our changes, we need to get Rails to apply this
migration to our development database. We do this by using the bin/rails
db:migrate command:

depot> bin/rails db:migrate
== 20241021000001 CreateProducts: migrating ===================================
-- create_table(:products)

-> 0.0025s
== 20241021000001 CreateProducts: migrated (0.0025s) ==========================

== 20241021000002 CreateActiveStorageTables: migrating ========================
-- create_table(:active_storage_blobs, {:id=>:primary_key})

-> 0.0065s
-- create_table(:active_storage_attachments, {:id=>:primary_key})

-> 0.0270s
-- create_table(:active_storage_variant_records, {:id=>:primary_key})

-> 0.0113s
== 20241021000002 CreateActiveStorageTables: migrated (0.0451s) ===============

And that’s it. Rails looks for all the migrations not yet applied to the database
and applies them. In our case, the products table is added to the database defined
by the development section of the database.yml file, and three tables are created for
Active Storage to use.

OK, all the groundwork has been done. We set up our Depot application as a
Rails project. We created the development database and configured our appli-
cation to be able to connect to it. We created a products controller and a Product
model and used a migration to create the corresponding products table. And a
number of views have been created for us. It’s time to see all this in action.

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


Seeing the List of Products
With four commands, we’ve created an application and a database (or a table
inside an existing database if you chose something besides SQLite 3) and
installed Active Storage. Before we worry too much about what happened
behind the scenes here, let’s try our shiny new application.

We mentioned previously that using a CSS processor will affect how we start
our server during development. This is because things like CSS processors
and JavaScript bundlers require a build step. Rather than requiring you to
start multiple processes, Rails provides bin/dev, which is a small script that
will start everything:

depot> bin/dev
08:43:51 web.1 | started with pid 31227
08:43:51 css.1 | started with pid 31228
08:43:52 web.1 | => Booting Puma
08:43:52 web.1 | => Rails 8.0.0.rc1 application starting in development
08:43:52 web.1 | => Run `bin/rails server --help` for more startup options
08:43:52 web.1 | Puma starting in single mode...
08:43:52 web.1 | * Puma version: 6.4.3 (ruby 3.3.5-p100) ("The Eagle of Durango")
08:43:52 web.1 | * Min threads: 3
08:43:52 web.1 | * Max threads: 3
08:43:52 web.1 | * Environment: development
08:43:52 web.1 | * PID: 31227
08:43:52 web.1 | * Listening on http://127.0.0.1:3000
08:43:52 web.1 | * Listening on http://[::1]:3000
08:43:52 web.1 | Use Ctrl-C to stop
08:43:52 css.1 |
08:43:52 css.1 | Rebuilding...
08:43:53 css.1 |
08:43:53 css.1 | Done in 228ms.

Windows users will need to run the command ruby bin/dev.

If you examine that output, in addtion to the lines containing web.1 that show
the Rails server starting, you see lines containing css.1 that show the CSS
rebuilding. This is all controlled by a file named Procfile.dev:

rails80/depot_a/Procfile.dev
web: bin/rails server
css: bin/rails tailwindcss:watch

Feel free to modify this file to suit your needs. For example, if you’re using a
virtual machine, you might need to add -b 0.0.0.0 to the rails server line to accept
connections from your host.

As with our demo application on page ?, this command starts a web server
on our local host, port 3000. If you get an error saying Address already in use when

• Click  HERE  to purchase this book now.  discuss

Iteration A1: Creating the Product Maintenance Application • 7

http://media.pragprog.com/titles/rails8/code/rails80/depot_a/Procfile.dev
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


you try to run the server, that means you already have a Rails server running
on your machine. If you’ve been following along with the examples in the book,
that might well be the Hello, World! application from Chapter 4. Find its console
and kill the server using Ctrl-C. If you’re running on Windows, you might see
the prompt Terminate batch job (Y/N)?. If so, respond with y.

Let’s connect to our application. Remember, the URL we give to our browser is
http://localhost:3000/products, which has both the port number (3000) and the name
of the controller in lowercase (products). The application looks like the following
screenshot.

Products New product

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.
Click the New Product link. A form should appear, as shown in the next
screenshot.

New product
Title

Description

Image

Choose File No file chosen

Price

Create Product Back to products

These forms are simply HTML templates, like the ones you created in Hello,
Rails!, on page ?. In fact, we can modify them. Let’s change the number of
rows in the Description field, and limit the acceptable files to select for upload
to images:

rails80/depot_a/app/views/products/_form.html.erb
<%= form_with(model: product, class: "contents") do |form| %>

<% if product.errors.any? %>
<div id="error_explanation"
class="bg-red-50 text-red-500 px-3 py-2 font-medium rounded-lg mt-3">
<h2><%= pluralize(product.errors.count, "error") %>
prohibited this product from being saved:</h2>

<ul>
<% product.errors.each do |error| %>

<li><%= error.full_message %></li>
<% end %>

</ul>
</div>

• 8

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_a/app/views/products/_form.html.erb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products/new
http://localhost:3003/products


<% end %>

<div class="my-5">
<%= form.label :title %>
<%= form.text_field :title, class: "block shadow rounded-md…" %>

</div>

<div class="my-5">
<%= form.label :description %>
<%= form.textarea :description, rows: 10, class: "block shadow…" %>➤

</div>

<div class="my-5">
<%= form.label :image %>
<%= form.file_field :image, accept: "image/*", class: "block shadow…" %>➤

</div>

<div class="my-5">
<%= form.label :price %>
<%= form.text_field :price, class: "block shadow rounded-md…" %>

</div>

<div class="inline">
<%= form.submit class: "rounded-lg py-3 px-5…" %>

</div>
<% end %>

We’ll explore this more in Chapter 8, Task C: Catalog Display, on page ?.
But for now, we’ve adjusted two fields to taste, so let’s fill it in, as shown in
screenshot on page 10 (note the use of HTML tags in the description—–this
is intentional and will make more sense later).

Now we need some files to upload. Create a directory named db/images in your
application, and download the images there.3

Fill in the fields, select a file, and click the Create button, and you should see
that the new product was successfully created. If you now click the Back link,
you should see the new product in the list, as shown in the screenshot on
page 10.

Perhaps it isn’t the prettiest interface, but it works, and we can show it to
our client for approval. She can play with the other links (showing details,
editing existing products, and so on). We explain to her that this is only a
first step—we know it’s rough, but we wanted to get her feedback early. (And
five commands probably count as early in anyone’s book.)

Note that if you’ve used a database other than SQLite 3, this step may have
failed. Check your database.yml file.

3. https://media.pragprog.com/titles/rails80/code/rails80/depot_a/db/images/

• Click  HERE  to purchase this book now.  discuss

Iteration A1: Creating the Product Maintenance Application • 9

https://media.pragprog.com/titles/rails80/code/rails80/depot_a/db/images/
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8


New product
Title

Programming Ruby 3.3 (5th Edition)

Description

<p>

<em>The Pragmatic Programmers' Guide</em>

Ruby is one of the most important programming languages in use for web

development. It powers the Rails framework, which is the backing of some of the

most important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented

programming language. This updated edition is a comprehensive reference on the

language itself, with a tutorial on the most important features of Ruby—including

pattern matching and Ractors—and describes the language through Ruby 3.3.

</p>

Image

Choose File ruby5.jpg

Price

33.95

Create Product Back to products

Products New product

Title:

Programming Ruby 3.3 (5th Edition)

Description:

<p> <em>The Pragmatic Programmers' Guide</em> Ruby is one of the most important

programming languages in use for web development. It powers the Rails framework, which is the

backing of some of the most important sites on the web. The Pickaxe Book, named for the tool on

the cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented programming

language. This updated edition is a comprehensive reference on the language itself, with a tutorial

on the most important features of Ruby—including pattern matching and Ractors—and describes

the language through Ruby 3.3. </p>

Image:

ruby5.jpg

Price:

33.95

Show this product

• 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products
http://localhost:3003/products/new
http://localhost:3003/rails/active_storage/blobs/redirect/eyJfcmFpbHMiOnsiZGF0YSI6MSwicHVyIjoiYmxvYl9pZCJ9fQ==--4b2298aaaec77dd6300bff649d5357c9dae96324/ruby5.jpg
http://localhost:3003/products/1

