
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Iteration K2: Storing Support Requests from Our Mailbox
As we mentioned above, the purpose of mailboxes is to allow us to execute code
on every email we receive. Because emails come in whenever the sender sends
them, we’ll need to store the details of a customer support request somewhere
for an administrator to handle later. To that end, we’ll create a new model called
SupportRequest that will hold the relevant details of the request, and have the process()
method of SupportMailbox create an instance for each email we get (in the final
section of this chapter we’ll display these in a UI so an admin can respond).

Creating a Model for Support Requests
We want our model to hold the sender’s email, the subject and body of the
email, and a reference to the customer’s most recent order if there’s one on
file. First, let’s create the model using a Rails generator:

> bin/rails generate model support_request
invoke active_record
create db/migrate/20241021000014_create_support_requests.rb
create app/models/support_request.rb
invoke test_unit
create test/models/support_request_test.rb
create test/fixtures/support_requests.yml

This created a migration for us, which is currently empty (remember that
migration filenames have a date and time in them, so your filename will be
slightly different). Let’s fill that in.

rails80/depot_tb/db/migrate/20241021000014_create_support_requests.rb
class CreateSupportRequests < ActiveRecord::Migration[8.0]

def change
create_table :support_requests do |t|
t.string :email, comment: "Email of the submitter"➤

t.string :subject, comment: "Subject of their support email"➤

t.text :body, comment: "Body of their support email"➤

t.references :order,➤

foreign_key: true,➤

comment: "their most recent order, if applicable"➤

t.timestamps
end

end
end

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/db/migrate/20241021000014_create_support_requests.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

With this in place, we can create this table via bin/rails db:migrate:

> bin/rails db:migrate
== 20241021121503 CreateSupportRequests: migrating ==========================
-- create_table(:support_requests)

-> 0.0016s
== 20241021121503 CreateSupportRequests: migrated (0.0017s) =================

We’ll also need to adjust the model itself to optionally reference an order:

rails80/depot_tb/app/models/support_request.rb
class SupportRequest < ApplicationRecord

belongs_to :order, optional: true➤

end

Now, we can create instances of SupportRequest from our mailbox.

Creating Support Requests from Our Mailbox
Our mailbox needs to do two things. First, it needs to create an instance of
SupportRequest for each email that comes in. But it also needs to connect that
request to the user’s most recent order if there’s one in our database (this
will allow our admin to quickly reference the order that might be causing
trouble).

As you recall, all orders have an email associated with them. So to get the
most recent order for an email, we can use where() to search all orders by
email, order() to order the results by the create data, and first() to grab the most
recent one. With that, we can use the methods on mail we saw earlier to create
the SupportRequest.

Here’s the code we need in app/mailboxes/support_mailbox.rb (which replaces the
calls to puts() we added before):

rails80/depot_tb/app/mailboxes/support_mailbox.rb
class SupportMailbox < ApplicationMailbox

def process
recent_order = Order.where(email: mail.from_address.to_s).➤

order("created_at desc").➤

first➤

SupportRequest.create!(➤

email: mail.from_address.to_s,➤

subject: mail.subject,➤

body: mail.body.to_s,➤

order: recent_order➤

)➤

end
end

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/app/models/support_request.rb
http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/app/mailboxes/support_mailbox.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

Why Don’t We Access Emails Directly When Needed?

It might seem easier to simply access the customer emails whenever we need them
rather than pluck out the data we want and store it into a database. There are two
reasons not to do this.

The first, and most practical reason, is about separation of concerns. Our support
requests only need part of what is in the emails, but they also might need more
metadata than the customer sends us. To keep our code organized and clean, it’s
better to store what we need explicitly.

The second reason is one of Rails’ famously held opinions. Rails arranges for all emails
to be deleted after thirty days. The reasoning is that emails contain personal data
that we don’t want to hold onto unnecessarily.

Protecting the personal data of your customers is a good practice, and it’s one that’s
more and more required by law. For example, the European General Data Protection
Regularly (GDPR) requires, among other things, that you delete any personal data
you have within one month of a request to do so. By auto-deleting personal data every
thirty days, you automatically comply with this requirement.a

a. We’re not lawyers, so please don’t take this sidebar as legal advice!

Now, restart your server and navigate to the conductor at http://localhost:3000/rails/con-
ductor/action_mailbox/inbound_emails. Click Deliver new inbound email and send
another email (remember to send it to support@example.com).

Now, quit your server and start up the Rails console. This will allow us to
check that a new SupportRequest was created (remember we have to format this
to fit in the book, so your output will be on fewer, longer lines):

> bin/rails console
irb(main):001:0> SupportRequest.first

(1.5ms) SELECT sqlite_version(*)
SupportRequest Load (0.1ms)

SELECT "support_requests".* FROM "support_requests"
ORDER BY "support_requests"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<SupportRequest
id: 1,
email: "chris@somewhere.com",
subject: "Missing book!",
body: "I can't find my book that I ordered. Please help!",
order_id: nil,
created_at: "2021-01-19 12:29:17",
updated_at: "2021-01-19 12:29:17">

• Click HERE to purchase this book now. discuss

Iteration K2: Storing Support Requests from Our Mailbox • 5

http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

You should see the data you entered into the conductor saved in the Support-
Request instance. You can also try this using the email of an order you have
in your system to verify it locates the most recent order. Of course, manually
checking our code isn’t ideal. We would like to have an automated test. For-
tunately, Rails provides a simple way to test our mailboxes, which we’ll learn
about now.

Testing Our Mailbox
When we used the generator to create our mailbox, you probably noticed the
file test/mailboxes/support_mailbox_test.rb get created. This is where we’ll write our test.
Since we generally know how to write tests, all we need to know now is how to
trigger an email. Action Mailbox provides the method receive_inbound_email_from_mail()
which we can use in our tests to do just that.

We need two tests to cover the functionality of our mailbox. The first is to
send an email from a customer without an order and verify we created a Sup-
portRequest instance. The second is to send an email from a customer who does
have orders and verify that the SupportRequest instance is correctly connected
to their most recent order.

The first test is most straightforward since we don’t need any test setup, so
we’ll create a new test() block inside test/mailboxes/support_mailbox_test.rb, like so:

rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
require "test_helper"

class SupportMailboxTest < ActionMailbox::TestCase
test "we create a SupportRequest when we get a support email" do➤

receive_inbound_email_from_mail(➤

to: "support@example.com",➤

from: "chris@somewhere.net",➤

subject: "Need help",➤

body: "I can't figure out how to check out!!"➤

)➤
➤

support_request = SupportRequest.last➤

assert_equal "chris@somewhere.net", support_request.email➤

assert_equal "Need help", support_request.subject➤

assert_equal "I can't figure out how to check out!!", support_request.body➤

assert_nil support_request.order➤

end➤

end

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

If we run this test now, it should pass:

> bin/rails test test/mailboxes/support_mailbox_test.rb
Run options: --seed 26908

Running:

.

Finished in 0.322222s, 3.1035 runs/s, 12.4138 assertions/s.
1 runs, 4 assertions, 0 failures, 0 errors, 0 skips

Great! For the second test, we’ll need to create a few orders before we send
the email. You’ll recall from Test Fixtures, on page ?, that we can use fixtures
to set up test data in advance. We have one we can use already, but ideally
we’d have a total of two orders for the user sending the email and a third
order from another user. That would validate that we’re both searching for
the right user and selecting the most recent order.

Let’s add two new fixtures to test/fixtures/orders.yml

rails80/depot_tb/test/fixtures/orders.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
name: Dave Thomas
address: MyText
email: dave@example.org
pay_type: Check

another_one:➤

name: Dave Thomas➤

address: 123 Any St➤

email: dave@example.org➤

pay_type: Check➤

created_at: <%= 2.days.ago %>➤
➤

other_customer:➤

name: Chris Jones➤

address: 456 Somewhere Ln➤

email: chris@nowhere.net➤

pay_type: Check➤

two:
name: MyString
address: MyText
email: MyString
pay_type: 1

• Click HERE to purchase this book now. discuss

Iteration K2: Storing Support Requests from Our Mailbox • 7

http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/test/fixtures/orders.yml
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

Note how we’re using ERB inside our fixture. This code is executed when we
request a fixture and we’re using it to force an older creation date for one of
our orders. By default, Rails sets created_at on models it creates from fixtures
to the current time. When we ask Rails to create that particular fixture with
orders(:another_one), it will execute the code inside the <%= and %>, effectively
setting the created_at value to the date as of two days ago.

With these fixtures available, we can write our second test, like so:

rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
require "test_helper"

class SupportMailboxTest < ActionMailbox::TestCase

previous test

test "we create a SupportRequest with the most recent order" do➤

recent_order = orders(:one)➤

older_order = orders(:another_one)➤

non_customer = orders(:other_customer)➤
➤

receive_inbound_email_from_mail(➤

to: "support@example.com",➤

from: recent_order.email,➤

subject: "Need help",➤

body: "I can't figure out how to check out!!"➤

)➤
➤

support_request = SupportRequest.last➤

assert_equal recent_order.email, support_request.email➤

assert_equal "Need help", support_request.subject➤

assert_equal "I can't figure out how to check out!!", support_request.body➤

assert_equal recent_order, support_request.order➤

end➤

end

Next, rerun the test and we should see our new test is passing:

> bin/rails test test/mailboxes/support_mailbox_test.rb
Run options: --seed 47513

Running:

..

Finished in 0.384217s, 5.2054 runs/s, 20.8216 assertions/s.
2 runs, 8 assertions, 0 failures, 0 errors, 0 skips

Nice! We can now confidently write code to handle incoming emails and test it
with an automated test. Now what do we do with these SupportRequest instances
we’re creating? We’d like to allow an administrator to respond to them. We

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails8/code/rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

could do that with plain text, but let’s learn about another part of Rails called
Action Text that will allow us to author rich text we can use to respond.

• Click HERE to purchase this book now. discuss

Iteration K2: Storing Support Requests from Our Mailbox • 9

http://pragprog.com/titles/rails8
http://forums.pragprog.com/forums/rails8

