
Extracted from:

Continuous Testing
with Ruby, Rails, and JavaScript

This PDF file contains pages extracted from Continuous Testing, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This is available
only in online versions of the books. The printed versions are black and white. Pagination

might vary between the online and printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Continuous Testing
with Ruby, Rails, and JavaScript

Ben Rady
Rod Coffin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks.Where those designations appear in this book, and The Pragmatic Programmers, LLC
was aware of a trademark claim, the designations have been printed in initial capital letters or in all
capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit
us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-70-8
Printed on acid-free paper.
Book version: P1.0—June 2011

http://pragprog.com

Reading code is good, but nothing beats experimentation. However
well you think you know a language or library, the cold, hard reality
of tested behavior trumps all.

That’s why we really like to run code and see what it does with
exploratory tests, rather than speculate about what it might or might
not do. We generally prefer this method to looking up behavior in
documentation because documentation can be incorrect. Better still,
an exploratory test can ensure that if the behavior provided by the
library changes in the future, we’ll have an automated way to find
out about it.We don’t leave those tests in our code all the time—only
when there’s a specific risk or problem that we’re trying to
mitigate—but when we need them, boy, are they helpful.

In this chapter, we’re going to discuss how interacting with your
code, rather than merely reading or executing it, can be a powerful
technique that is made much easier with continuous testing.

4.1 Understanding Code by Changing It

When running tests continuously, the easiest way to learn what code
does is often just to change it and see what happens. In contrast to
running an external tool like a debugger or only reading through the
code, when you test it continuously you can modify it in a way that
proves (or disproves) your theory about what is going on and let the
test runner react to your change. In the previous chapter, for
example, we looked at how temporarily deleting code can help us
determine if it is unnecessary. Let’s look at how this technique can
help us answer other kinds of questions we may have about our
code.

Are We Testing This?

How can we check whether particular conditions in our code are
tested? How can we be sure, for example, that we’re testing a
method like zip_code() with a nil address? Because RSpec adds
should() and should_not() methods to Object when running specs, we
can temporarily add assertions to our production code to check
whether or not particular cases are being tested. So we can answer
our question by making a small change to zip_code():

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

Download ruby/twits/lib/revisions/user3.1.rb
def zip_code
@address_text.should_not == nil
Locales.current.parse_postal_code(@address_text)

end

If all our tests pass after adding such an assertion, we know that
case is not being tested. After saving this change, Autotest
immediately runs our tests and tell us that, in fact, we never test
zip_code() with a nil value. To cover this condition, we can leave the
assertion in place and then add a test that we expect to fail at that
point:

Download ruby/twits/spec/revisions/user3.1_spec_fail.rb
it "should treat missing addresses like missing zip code" do
user = User.new
user.zip_code.should == nil

end

A quick save, and Autotest reveals that we’re now covering that
condition:

F

Failures:

1) Twitter User should treat missing addresses like missing zip code
Failure/Error: user.zip_code.should be nil
expected not: == nil

got: nil
./code/ruby/twits/lib/revisions/user3.1.rb:8:in `zip_code'
./code/ruby/twits/spec/revisions/user3.1_spec_fail.rb:8:in

`block (2 levels) in <top (required)>'

Finished in 0.00105 seconds
1 example, 1 failure

Now we can remove the assertion in User and let the example run
normally:

8 examples, 0 failures

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 5

http://media.pragprog.com/titles/rcctr/code/ruby/twits/lib/revisions/user3.1.rb
http://media.pragprog.com/titles/rcctr/code/ruby/twits/spec/revisions/user3.1_spec_fail.rb
http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

So it turns out that case works without any additional changes. If
the test had failed, we would know that the current implementation
couldn’t handle a nil address, and we could change it as necessary.
Also note that before we added this example, the zip_code() method
was completely covered. Unlike the previous example, where the
code was merely being executed but not tested, in this case all the
existing code is being tested. What is missing is a particular usage
of that code (and what the expected behavior should be).

We refer to these kinds of assertions, added to production code
rather than tests, as inline assertions. By temporarily adding these
kinds of assertions to our code, we get an immediate, reliable
verification of whether or not this condition is tested. While reading
through specs is a great way to learn what your system does (and
doesn’t do), making them fail is even better.

How Did I Get to This Method?

Ruby’s Kernel#caller() method returns a trace of the current call stack.
This information can be really useful when trying to figure out how
a particular method is used. Say you’re staring at a piece of code
(for example, the zip_code() method in our user class) and you want
to know which tests it’s covered by, you can simply add puts caller.first,
save the change, and Autotest will report the callers like this:

../lib/revisions/user_spec.rb:27

../lib/revisions/user_spec.rb:34

../lib/revisions/user_spec.rb:41

../lib/revisions/user_spec.rb:48

These refer to the four lines in our spec where we’re calling zip_code().
If this method was being tested indirectly, then we would see entries
in this list that weren’t specs. In that case, we might want to look
three calls back using something like puts caller[0..3].

What Can I Do with This Object?

In a statically typed language, behavior and type are nearly
inseparable. If you know an object’s type, you know everything that
it’s capable of doing. In a dynamic language like Ruby, that’s not
really true. Methods can be added, changed, or removed at runtime,

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 6

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

Inline Assertions vs. Assert Keywords
Many languages support an assert keyword that lets you check for particular
conditions in your code and raise an error if one of the checks fails.
Typically, these kinds of assertions are enabled during testing but turned
off in production.

We’ve never really understood the rationale behind this. Either something
is broken or it isn’t. Most of the time, if something is broken, we want our
code to stop executing as quickly as possible so we don’t corrupt data or
give the user an erroneous result. The remainder of the time, we want to
recover gracefully. That graceful recovery is expected behavior that we
want to verify. Failing loud and fast in “test mode” while silently ignoring
problems in production just seems crazy.

The intent behind inline assertions differs from these kinds of
language-supported assert keywords. Inline assertions are temporary and
only used to drive out missing cases in your tests. Once those cases are
tested, we remove the inline assertions. Inline assertions may also check
for cases that are legitimate—even expected—while assert keywords are
only used to check for things that indicate an error state.

so simply knowing an object’s type doesn’t necessarily tell you what
behaviors it has.

The problem is, we don’t always know how to invoke the exact
behavior we’re looking for.You might know you need to split a string,
but what are your options for providing a delimiter? Maybe you’re
not even sure what the behavior is, but you have a general idea and
you just want to know what your options are. No problem, just make
a simple call:

puts user.zip_code.methods

This tells us exactly what the object can do. Just like the caller
information in the previous example, by temporarily adding this to
our code, we can get Autotest to print the list of available methods
for each object instance driven out by a particular example. This
includes methods dynamically mixed in with Ruby’s extend method.
If we want to be more discerning about the type of methods we’re
looking for, we filter the results with a regular expression:

puts user.zip_code.methods.grep(/each/)

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 7

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

This would tell us all the method names that contain the word each,
such as each(), each_byte(), and reverse_each().

Adding Diagnostic Methods

Being a dynamic language with rich metaprogramming support,
Ruby allows us to change almost anything in our environment. Not
only can we dynamically create new methods and classes, but we
can also change any existing method or class based on the particular
context in which we’re using the system.

We can take advantage of this to add additional diagnostic tools that
are available when running specs from Autotest. This gives us a lot
of power and control over the kinds of information we can get from
our code without cluttering it up with a bunch of logging statements
that are only useful when running tests.

In the previous section, we took advantage of Ruby’s built-in methods
and the assertion methods mixed in by RSpec to either print
information to the console or to intentionally fail a test to indicate
what the code was doing. We chose to use these methods mostly
because they were already there and we could make use of them.

However, there’s no reason to limit ourselves to what’s provided.
With Ruby, we can add whatever methods we want to whatever
classes we want. Let’s take our original example:

puts user.zip_code.methods.grep(/each/)

This is handy but a little more verbose than we’d like, especially
considering we’re going to delete this code as soon as we find the
method we’re looking for. What if we could get the same effect by
doing this:

zip_code.put_methods /each/

We can add this method to every object when (and only when) our
tests are run just by using Ruby’s metaprogramming facilities. First,
let’s open the spec_helper.rb file in the spec and add our put_methods()
method to Ruby’s Object:
Download ruby/twits/spec/spec_helper.rb
class Object
def put_methods(regex=/.*/)

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 8

http://media.pragprog.com/titles/rcctr/code/ruby/twits/spec/spec_helper.rb
http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

Joe asks:
What Is Metaprogramming?

Metaprogramming is writing code that modifies code. In Ruby this can be
done in a number of different ways, ranging from calling the extend() or
include() methods to add methods to a class or object to simply defining (or
redefining) a method for a third-party class in your source code. As one
might expect, metaprogramming can cause some rather counterintuitive
behavior if not used carefully, but it is a very effective way to change the
behavior of existing code without modifying the source itself.

puts self.methods.grep(regex)
end

end

What we’re doing here is dynamically adding a method (put_methods())
to Ruby’s base object (Object). This means put_methods() will be
available on every object instance in our system whenever this code
is loaded in the runtime environment. Now, if we want to know what
looping methods are available on a user’s zip code, we can find out
like so:

user.zip_code.put_methods /each/

This results in the following output from Autotest:

each_cons
each_with_object
each_with_index
each_line
each
each_byte
reverse_each
each_char
each_slice

There are many other places we could take this. We could use this
technique to look at state within our domain objects by creating
custom inspectors for more complex types. This is sometimes

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 9

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

preferable to overriding to_s() in our classes when the only motivation
for doing so is inspection while running tests.

• CLICK HERE to purchase this book now. discuss

Understanding Code by Changing It • 10

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

