Extracted from:

Web Development with ReasonML

Type-Safe, Functional Programming for JavaScript Developers

This PDF file contains pages extracted from Web Development with ReasonML,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

The .
Pragmatic
ogrammers

Web Development
with ReasonML

Type-Sate, Functional Programming
for JavaScript Developers

J. David Eisenberg
edited by Andrea Stewart






Web Development with ReasonML

Type-Safe, Functional Programming for JavaScript Developers

J. David Eisenberg

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Sean Dennis

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-633-4
Book version: P1.0—April 2019


https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Structuring Data with Records and Modules

While the tuple we built in Chapter 5, Using Collections, on page ? was
useful and appropriate for the task, tuples aren't the answer when we have
to work with more complex data structures. Instead, ReasonML has records,
which let you create immutable data structures with field names. This makes

your code more organized and readable.

Modules also help in keeping code organized. You'll see that you can create
modules to hold data types, records, and functions that operate on them.
Modules are also first-class citizens in the ReasonML world. You'll see this
in action as we create custom modules that serve as arguments to other
modules.

Specifying Records

Tuples were adequate for defining a data type for an order of shirts expressed
as the quantity of shirts and the shirt size, as we saw on page ?. But there’s
more to shirts than just their size. You need to know whether each one is
long-sleeved or short-sleeved, the color, pattern, type of cuff, and type of collar.
This is definitely not a job for a tuple. There are seven pieces of data, and I'll
bet if you walk away from this book for five minutes, you won’t remember

what order they are in.

First, let’s define some data types for size, sleeve length, color, pattern, cuff,
and collar:

records/shirts/src/Shirts.re
type size =
| XSmall(int)
| Small
| Medium
| Large
| XLarge(int);

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

°6

type sleeve =
| Short
| Long
| XLong; /* for tall people */

type color =
| White

| Blue

| Red

| Green

| Brown;

type pattern =
| Solid
| Pinstripe
| Check;

type cuff =
| Button
| French
| NoCuff;

type collar =
| Button
| Straight
| Spread;

Even though Button appears in both cuff and collar, there’s no conflict. If you
have code like this:

let ambiguous = Button;
let explicit: cuff = Button;

In the first line, ReasonML'’s type inference will choose the last Button you
specified (from collar). You can always explicitly tell ReasonML which Button
you want by annotating your variables.

Now, we define a record type that gives all the information needed to specify
a shirt. It’'s okay to have a field name the same as its data type. (And yes,
short-sleeve shirts with French cuffs really exist.)

records/shirts/src/Shirts.re

type order = {
quantity: int,
size: size,
sleeve: sleeve,
color: color,
pattern: pattern,
cuff: cuff,
collar: collar

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

Accessing and Updating Records ¢ 7

Accessing and Updating Records

Here’s a definition of a record of the order type and an example of how you
access the individual fields using dot notation. You don’t have to specify the
fields in the same order that you used when you created the data type:

records/shirts/src/Shirts.re

let myOrder = {
quantity: 1,
size: XlLarge(1l),
sleeve: Long,
color: Blue,
pattern: Solid,
cuff: Button,
collar: Button

}

Js.log2("Size:", myOrder.size); /* Size: [1, tag: 1] */

This looks a lot like a JavaScript object, but it isn’t one. Let me say that again:
ReasonML records are notJavaScript objects. We'll discuss that when we talk
about Interoperating with Objects, on page ?. One of the biggest differences
is thatrecordsarelmmutableYoucantchange the value of a field in a record.
Instead, you have to create a brand-new record. Looking at all those fields,
you might be terribly disheartened, but don’t worry. ReasonML has the spread
operator. Here’s the code to create a new order the same size as the first one,

but with a different color and different style of cuft:

records/shirts/src/Shirts.re
let otherOrder = {
...myOrder,

color: White,
cuff: French
};

Js.log2("Cuff:", otherOrder.cuff); /* Cuff: 1 */

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://media.pragprog.com/titles/reasonml/code/records/shirts/src/Shirts.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

*8

If You Really Need Mutability

N

Okay, maybe records aren’t that immutable. If you absolutely,
positively must have a modifiable field in a record, precede its
name with the keyword mutable. As you adopt a more functional
programming style, you'll find that you won’t need mutability as
much as you thought, so try to keep mutable to a minimum.

records/mutable-record/src/Demo.re
type person = {
name: string,
mutable age: int
ks

let happyBirthday = (someone:person) : unit => {
someone.age = someone.age + 1;
()
b
let friend = {
name: "Juanita Fulano",
age: 34
i
happyBirthday(friend);
Js.log(friend.age); /* 35 */

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/reasonml/code/records/mutable-record/src/Demo.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

