
Extracted from:

Web Development with ReasonML
Type-Safe, Functional Programming for JavaScript Developers

This PDF file contains pages extracted from Web Development with ReasonML,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Web Development with ReasonML
Type-Safe, Functional Programming for JavaScript Developers

J. David Eisenberg

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-633-4
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating Variant Data Types
Here’s where ReasonML’s type system begins to show some of its power. Let’s
say we want a data type to represent shirt sizes: Small, Medium, Large, and XLarge
(extra-large). We could use an alias for the string type, but it wouldn’t keep us
from doing things like this:

datatypes/src/StringSizes.re
type shirtSize = string;

let mySize = "Medium";
let otherSize = "Large";
let wrongSize = "M";

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/StringSizes.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

ReasonML lets us create a data type that allows only valid values with a data
type constructor, which, as its name implies, tells us how to construct a value
of that particular data type. This is called a variant data type, as we’re speci-
fying the various values the data type can have:

datatypes/src/ShirtSizes.re
type shirtSize =

| Small
| Medium
| Large
| XLarge;

Constructor names must begin with a capital letter. We can bind shirtSize values
to variables. The first example has its type annotated:

datatypes/src/ShirtSizes.re
let mySize: shirtSize = Medium;
let otherSize = Large;

The constructors for a variant data type give you all the possible values. But
they’re not strings! Doing the following:

let badSize: shirtSize = "Medium";

Gives us this error:

We've found a bug for you!
/path/to/code/datatypes/src/ShirtSizes.re 16:26-33

15 │
16 │ let badSize: shirtSize = "Medium";

This has type:
string

But somewhere wanted:
shirtSize

If we try to create a shirtSize binding with an illegal value:

let badSize: shirtSize = M;

The compiler tells us that we’ve used a value that isn’t in our data type:

We've found a bug for you!
/path/to/code/datatypes/src/ShirtSizes.re 16:26

15 │
16 │ let badSize: shirtSize = M;

This variant expression is expected to have type shirtSize
The constructor M doesn't belong to type shirtSize

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

Using Variant Data Types
Let’s say that a small shirt costs $11.00, a medium costs $12.50, a large
costs $14.00, and an extra-large costs $16.00. We can write a function to
return the price of a shirt given its size:

datatypes/src/ShirtSizes.re
let priceIf = (size: shirtSize) : float => {

if (size === Small) {
11.00

} else if (size === Medium) {
12.50

} else if (size === Large) {
14.00

} else {
16.00

}
};

Js.log(priceIf(mySize)); /* output: 12.5 */
Js.log(priceIf(otherSize)); /* output: 14 */

But it’s much more common in ReasonML to use a switch expression to pattern
match the size:

datatypes/src/ShirtSizes.re
let price = (size: shirtSize) : float => {

switch (size) {
| Small => 11.00
| Medium => 12.50
| Large => 14.00
| XLarge => 16.00

}
};

Js.log(price(mySize)); /* output: 12.5 */
Js.log(price(otherSize)); /* output: 14 */

Each of the variants (patterns) is preceded by a vertical bar | and followed by
a thick arrow =>, which is followed by the expression to yield for that variant.
You can think of the vertical bar as introducing an alternative to match to.
ReasonML attempts to match the value size with each of the patterns in the
order given. When we do a pattern match on a variant data type, we must
account for all the variants. If we were to leave off the pattern match for XLarge,
we would get this error:

• Click HERE to purchase this book now. discuss

Using Variant Data Types • 7

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

Warning number 8

28 │
29 │ let price = (size: shirtSize) : float => {
30 │ switch (size) {
. │ ...

34 │ }
35 │ };
36 │

You forgot to handle a possible value here, for example:
XLarge

Let’s use switch to write a function that converts a shirtSize value to a string giving
the abbreviation for the sizes:

datatypes/src/ShirtSizes.re
let stringOfShirtSize = (size: shirtSize) : string => {

switch (size) {
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge => "XL"

};
};

Js.log(stringOfShirtSize(mySize)); /* output: M */

We absolutely need the stringOfShirtSize() function. Consider this code:

datatypes/src/PrintType.re
type shirtSize =

| Small
| Medium
| Large
| XLarge;

let mySize = Medium;
Js.log2("Size is", mySize);

Here’s what you get when you run it:

you@computer:~/book_projects/datatypes> node src/PrintType.bs.js
Size is 1

What’s going on here?! Why do we get a number? The answer is that all of
ReasonML’s type checking and manipulation is done entirely at compile time.
Once the types are checked, ReasonML is free to use any internal form it likes

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/PrintType.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

to represent the types. In this case, it is optimized into numeric form at run-
time, as we can see in the JavaScript code that was generated:

datatypes/src/PrintType.bs.js
// Generated by BUCKLESCRIPT VERSION 5.0.0-dev.4, PLEASE EDIT WITH CARE
'use strict';

console.log("Size is", /* Medium */1);

var mySize = /* Medium */1;

exports.mySize = mySize;
/* Not a pure module */

The moral of the story: ReasonML’s data types exist only at compile time. If
you want to display the value in a readable form, you must provide a function
to convert the type to a string.

We’ll also want a function that converts a string parameter, an abbreviation
for the size, to a shirtSize value. But we have a problem: what happens if
someone gives us a bad string, such as "N" or "Medium"? If switch requires us to
write out all possible values, how do we handle all possible strings? Luckily,
switch is provided with a catch-all pattern, _ (underscore), which stands for
“any case that hasn’t been matched yet.”

datatypes/src/ShirtSizes.re
let shirtSizeOfString = (str: string) : shirtSize => {

switch (str) {
| "S" => Small
| "M" => Medium
| "L" => Large
| "XL" => XLarge
| _ => Medium

}
};

Our approach in this code is to throw our hands up in the air and say, “If we
can’t figure out what you want, we’ll give you Medium.” If you aren’t thrilled
with this, don’t worry—we’ll find a better way to handle this later in the
chapter.

Creating Variant Data Types with Parameters
Shirt sizes don’t end with extra-large. There are double, triple, and even
quadruple extra-large, usually abbreviated as XXL, XXXL, and XXXXL.
Parameterized types let us specify a parameter for the constructor. In our
case, we want the parameter to tell us how many Xs are on the shirt size.

• Click HERE to purchase this book now. discuss

Creating Variant Data Types with Parameters • 9

http://media.pragprog.com/titles/reasonml/code/datatypes/src/PrintType.bs.js
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ShirtSizes.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

Here’s a parameterized version of the shirt size constructor (it has the same
name, but it’s in a separate file):

datatypes/src/ParamShirtSizes.re
type shirtSize =

| Small
| Medium
| Large
| XLarge(int);

The last line says that to construct an XLarge variant, you need to provide an
integer, which we’ll use to tell how many “extras” we want:

datatypes/src/ParamShirtSizes.re
let mySize: shirtSize = Medium;
let bigSize = XLarge(1);
let veryBigSize = XLarge(3);

When it comes to setting the price, let’s say that XLarge(1) costs $16.00, plus
$0.50 for every additional X. We modify the switch to accept the parameter and
use it:

datatypes/src/ParamShirtSizes.re
let price = (size: shirtSize) : float => {Line 1

switch (size) {-

| Small => 11.00-

| Medium => 12.50-

| Large => 14.005

| XLarge(n) => 16.00 +.-

(float_of_int(n - 1) *. 0.50)-

}-

};-

10

Js.log(price(mySize)); /* output: 12.5 */-

Js.log(price(bigSize)); /* output: 16 */-

Js.log(price(veryBigSize)); /* output: 17 */-

Line 6 uses destructuring to extract the parameter from the size variable. For
example, if size were XLarge(3), n would have the value 3 in the calculation. In
addition to extracting parameters, destructuring also lets you extract fields
from a data structure. We’ll see this come into play in later chapters.

The next function to modify is stringOfShirtSize(). Again, we need destructuring
to extract the parameter n in variants of the form XLarge(n) and make a string
of that many Xs. The make() function in BuckleScript’s String module1 does
exactly that.

1. reasonml.github.io/api/String.html

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
https://reasonml.github.io/api/String.html
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

datatypes/src/ParamShirtSizes.re
let stringOfShirtSize = (size: shirtSize) : string => {

switch (size) {
| Small => "S"
| Medium => "M"
| Large => "L"
| XLarge(n) => String.make(n, 'X') ++ "L"

};
};

Js.log(stringOfShirtSize(veryBigSize)); /* output: XXXL */

Note that the second argument to make() is a character in single quotes. We’ll
solve the problem of repeating a multi-character string when we discuss
recursion on on page ?.

The shirtSizeOfString() function needs the addition of a few lines to handle the
new “extra” sizes (showing only the additions here):

datatypes/src/ParamShirtSizes.re
| "L" => Large
| "XL" => XLarge(1)
| "XXL" => XLarge(2)
| "XXXL" => XLarge(3)
| "XXXXL" => XLarge(4)
| _ => Medium

This function still leaves the issue of what to do with invalid strings—it’s still
blindly assigning Medium. Let’s find a better way to handle this after you first
try your hand at creating a variant data type.

• Click HERE to purchase this book now. discuss

Creating Variant Data Types with Parameters • 11

http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/ParamShirtSizes.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

Using One-Variant Data Types

Now that we know how to create a variant data type with a parameter, we can improve
on the bogus example that we made with aliases on page ?.

Instead of aliases, we define the score, percent, and user ID types as data type con-
structors:

datatypes/src/SingleVariant.re
type scoreType = Score(int);
type percentType = Percent(float);
type userId = UserId(int);

When we use variables of these parameterized types, we must construct values, as
in line 1, and destructure them, as in line 4.

datatypes/src/SingleVariant.re
let person: userId = UserId(60);Line 1

-

let calcPercent = (score: scoreType, max: scoreType) : percentType => {-

let Score(s) = score;-

let Score(m) = max;5

Percent(float_of_int(s) /. float_of_int(m) *. 100.0);-

};-

-

/* Won't compile. Comment out next line to get a working program */-

/*let result = calcPercent(person, Score(75));*//**/10

-

let Percent(result) = calcPercent(Score(40), Score(75));-

Js.log({j|Good result is $result|j}); /* output: Good result is 53.33333... */-

Using these data types gives us type safety. ReasonML will complain in line 10 that
you’re trying to use a userId where a score is required.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/reasonml/code/datatypes/src/SingleVariant.re
http://media.pragprog.com/titles/reasonml/code/datatypes/src/SingleVariant.re
http://pragprog.com/titles/reasonml
http://forums.pragprog.com/forums/reasonml

