
Extracted from:

Powerful Command-Line
Applications in Go

Build Fast and Maintainable Tools

This PDF file contains pages extracted from Powerful Command-Line Applications
in Go, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Powerful Command-Line
Applications in Go

Build Fast and Maintainable Tools

Ricardo Gerardi

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Brian P. Hogan
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-696-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my beloved wife Kassia. My best friend,
my greatest supporter. Sadly she passed

away due to cancer before seeing this book
completed.

To my four incredible daughters Gisele, Livia,
Elena, and Alice. The reason for everything.

CHAPTER 1

Your First Command-Line Program in Go
Whether you’re looking to automate a task, analyze data, parse logs, talk to
network services, or address other requirements, writing your own command-
line tool may be the fastest—and perhaps the most fun—way to achieve your
goal. Go is a modern programming language that combines the reliability of
compiled languages with the ease of use and speed of dynamically typed
languages. It makes writing cross-platform command-line applications more
approachable while providing the features required to ensure these tools are
well designed and tested.

Before you dive into more complex programs that read and write files, parse
data files, and communicate over networks, you’ll create a word counter
program that will give you an idea of how to build and test a command-line
application using Go. You’ll start with a basic implementation, add some
features, and explore test-driven development along the way. When you’re
done, you’ll have a functional word counter program and a better understand-
ing of how to build more complex apps.

Throughout the book you’ll develop other CLI applications to explore more
advanced concepts.

Building the Basic Word Counter
Let’s create a tool that counts the number of words or lines provided as input
using the standard input (STDIN) connection. By default, this tool will count
the number of words, unless it receives the -l flag, in which case it’ll count the
number of lines instead.

We’ll start by creating the basic implementation. This version reads data from
STDIN and displays the number of words. We’ll eventually add more features,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

but this initial version will let you get comfortable with the code for a Go-
based command-line application.

Before you dive into writing code for the word counter, let’s set up a project
directory. In your home directory, create the subdirectory pragprog.com/rggo/first-
Program/wc and switch to it:

$ mkdir -p $HOME/pragprog.com/rggo/firstProgram/wc
$ cd $HOME/pragprog.com/rggo/firstProgram/wc

Go programs are composed of packages. A package consists of one or more Go
source code files with code that can be combined into executable programs
or libraries.

Starting with Go 1.11, you can combine one or more packages into Go modules.
Modules are a new Go standard for grouping related packages into a single
unit that can be versioned together. Modules enable consistent dependency
management for your Go applications. For more information about Go mod-
ules, consult the official wiki page.1

Initialize a new Go module for your project:

$ go mod init pragprog.com/rggo/firstProgram/wc
go: creating new go.mod: module pragprog.com/rggo/firstProgram/wc

You create an executable program in Go by defining a package named main that
contains a function called main(). This function takes no arguments and returns
no values. It serves as the entry point for your program.

package main

func main() {
«main contents»

}

Although not a requirement, by convention, the main package is usually defined
in a file named main.go. You’ll use this convention throughout this book.

Code Example File Path

For brevity, the code example path omits the root directory
$HOME/pragprog.com/rggo. For example, in the following code sample,
the code path starts at firstProgram/wc.

Create the file main.go using your favorite text editor. Add the package main defi-
nition to the top of the file like this:

1. github.com/golang/go/wiki/Modules

• 2

• Click HERE to purchase this book now. discuss

https://github.com/golang/go/wiki/Modules
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

firstProgram/wc/main.go
package main

Next, add the import section to bring in the libraries you’ll use to read data
from STDIN and print results out.

firstProgram/wc/main.go
import (

"bufio"
"fmt"
"io"
"os"

)

For this tool, you import the bufio package to read text, the fmt package to print
formatted output, the io package which provides the io.Reader interface, and
the os package so you can use operating system resources.

Your word counter will have two functions: main() and count(). The main() function
is the starting point of the program. All Go programs that will be compiled
into executable files require this function. Create this function by adding the
following code into your main.go file. This function will call the count() function
and print out that function’s return value using the fmt.Println() function:

firstProgram/wc/main.go
func main() {

// Calling the count function to count the number of words
// received from the Standard Input and printing it out
fmt.Println(count(os.Stdin))

}

Next, define the count() function, which will perform the actual counting of the
words. This function receives a single input argument: an io.Reader interface.
You’ll learn more about Go interfaces in Chapter 2, Interacting with Your
Users, on page ?. For now, think of an io.Reader as any Go type from which
you can read data. In this case, the function will receive the contents of the
STDIN to process.

firstProgram/wc/main.go
func count(r io.Reader) int {

// A scanner is used to read text from a Reader (such as files)
scanner := bufio.NewScanner(r)

// Define the scanner split type to words (default is split by lines)
scanner.Split(bufio.ScanWords)

// Defining a counter
wc := 0

• Click HERE to purchase this book now. discuss

Building the Basic Word Counter • 3

http://media.pragprog.com/titles/rggo/code/firstProgram/wc/main.go
http://media.pragprog.com/titles/rggo/code/firstProgram/wc/main.go
http://media.pragprog.com/titles/rggo/code/firstProgram/wc/main.go
http://media.pragprog.com/titles/rggo/code/firstProgram/wc/main.go
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

// For every word scanned, increment the counter
for scanner.Scan() {

wc++
}

// Return the total
return wc

}

The count() function uses the NewScanner() function from the bufio package to
create a new scanner. A scanner is a convenient way of reading data delimited
by spaces or new lines. By default, a scanner reads lines of data, so we instruct
the scanner to read words instead by setting the Split() function of the scanner
to bufio.ScanWords(). We then define a variable, wc, to hold the word count and
increment it by looping through each token using the scanner.Scan() function
and adding 1 to the counter each time. We then return the word count.

In this example, for simplicity’s sake, we are ignoring the error that may be
generated during the scanning. In your code, always check for errors. You’ll
learn more about dealing with errors in the context of a command-line tool
in Creating the Initial To-Do Command-Line Tool, on page ?.

You’ve completed the basic implementation of the word count tool. Save the
file main.go with your changes. Next, you’ll write tests to ensure this implemen-
tation works the way you expect it to.

Testing the Basic Word Counter
Go lets you test your code automatically without requiring external tools or
frameworks. You’ll learn more about how to test your command-line applica-
tions throughout the book. Right now, let’s write a basic test for the word
counter to ensure that it correctly counts the words in the given input.

Create a file called main_test.go in the same directory as your main.go file. Include
the following content, which defines a testing function that tests the count()
function you’ve already defined in the main program:

firstProgram/wc/main_test.go
package main

import (
"bytes"
"testing"

)

// TestCountWords tests the count function set to count words
func TestCountWords(t *testing.T) {

b := bytes.NewBufferString("word1 word2 word3 word4\n")

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rggo/code/firstProgram/wc/main_test.go
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

exp := 4

res := count(b)

if res != exp {
t.Errorf("Expected %d, got %d instead.\n", exp, res)

}
}

This test file contains a single test called TestCountWords(). In this test, we create
a new buffer of bytes from a string containing four words and pass the buffer
into the count() function. If this function returns anything other than 4, the
test doesn’t pass and we raise an error that shows what we expected and
what we actually got instead.

To execute the test, use the go test tool like this:

$ ls
go.mod main.go main_test.go
$ go test -v
=== RUN TestCountWords
--- PASS: TestCountWords (0.00s)
PASS
ok pragprog.com/rggo/firstProgram/wc 0.002s

The test passes, so you can compile the program with go build. You’ll learn
more about the different options you can use to build Go programs in Chapter
11, Distributing Your Tool, on page ?. For now, build your command-line
tool like this:

$ go build

This creates the wc executable in the current directory:

$ ls
go.mod main.go main_test.go wc

Test the program out by passing it an input string:

$ echo "My first command line tool with Go" | ./wc
7

The program works as expected. Let’s add the ability to count lines to this tool.

• Click HERE to purchase this book now. discuss

Testing the Basic Word Counter • 5

http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

