
Extracted from:

Powerful Command-Line
Applications in Go

Build Fast and Maintainable Tools

This PDF file contains pages extracted from Powerful Command-Line Applications
in Go, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Powerful Command-Line
Applications in Go

Build Fast and Maintainable Tools

Ricardo Gerardi

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Brian P. Hogan
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-696-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my beloved wife Kassia. My best friend,
my greatest supporter. Sadly she passed

away due to cancer before seeing this book
completed.

To my four incredible daughters Gisele, Livia,
Elena, and Alice. The reason for everything.

Testing with Table-Driven Testing
When you’re writing tests for your command-line tool, you often want to write
test cases that cover different variations of the function or tool usage. By
doing this, you ensure that the different parts of your code are working,
increasing the reliability of your tests and tool. For example, to test the filterOut()
function from the walk tool, it’s a good idea to define test cases for the different
conditions such as filtering with or without extension, matching or not, and
minimum size.

One of the benefits of Go is that you can use Go itself to write test cases. You
don’t need a different language or external frameworks. By leveraging Go, you
use all the language’s features to help define your test cases. A common
pattern for writing test cases that cover different variations of the function
you’re testing is known as table-driven testing. In this type of testing, you
define your test cases as a slice of anonymous struct, containing the data
required to run your tests and the expected results. You then iterate over this
slice using loops to execute all test cases without repeating code. The Go testing
package provides a convenient function Run() that runs a subtest with the
specified name. Let’s use this approach to test this version of the tool.

Create a new file called actions_test.go in the same directory as your actions.go
file. Add the package definition and the import statement at the top of this file:

fileSystem/walk/actions_test.go
package main

import (
"os"
"testing"

)

You’ll use the package os to handle file details; and the testing package that
provides functions required to test your Go code.

Now, create a test function to test the filterOut() function.

fileSystem/walk/actions_test.go
func TestFilterOut(t *testing.T) {

Add the anonymous slice of struct with the definition of the test cases. The
struct fields represent the values that we’ll use for each test such as the test’s
name, file to read, extension to filter, minimum file size, and the expected
test result:

fileSystem/walk/actions_test.go
testCases := []struct {

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rggo/code/fileSystem/walk/actions_test.go
http://media.pragprog.com/titles/rggo/code/fileSystem/walk/actions_test.go
http://media.pragprog.com/titles/rggo/code/fileSystem/walk/actions_test.go
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

name string
file string
ext string
minSize int64
expected bool

}{
{"FilterNoExtension", "testdata/dir.log", "", 0, false},
{"FilterExtensionMatch", "testdata/dir.log", ".log", 0, false},
{"FilterExtensionNoMatch", "testdata/dir.log", ".sh", 0, true},
{"FilterExtensionSizeMatch", "testdata/dir.log", ".log", 10, false},
{"FilterExtensionSizeNoMatch", "testdata/dir.log", ".log", 20, true},

}

Each element of the slice represents a test case. For example, the first test case’s
name is “FilterNoExtension”. This uses the file testdata/dir.log, the extension to filter
is blank, the minimum size is zero, and we expect this test to return the Boolean
value false. This is similar for the remaining test cases, each with different values.

Once you have the test cases defined, add the for loop to iterate over each test
case. For each case, call the t.Run() method, providing the test name as the
first parameter and an anonymous function of type func(t *testing.T) as the second
parameter. Inside the anonymous function run the tests using the test case
attributes defined before:

fileSystem/walk/actions_test.go
for _, tc := range testCases {

t.Run(tc.name, func(t *testing.T) {
info, err := os.Stat(tc.file)
if err != nil {

t.Fatal(err)
}

f := filterOut(tc.file, tc.ext, tc.minSize, info)

if f != tc.expected {
t.Errorf("Expected '%t', got '%t' instead\n", tc.expected, f)

}
})

}
}

For these tests, you first retrieve the file’s attributes using the function os.Stat().
Then execute the filterOut() function providing these attributes and the test
case parameters. Finally, compare the result with the expected result from
the test case, failing the test if they don’t match.

Now, let’s add the integration test cases. Save the file actions_test.go, create a
file main_test.go, and edit it. Include the package definition and the import list:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rggo/code/fileSystem/walk/actions_test.go
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

fileSystem/walk/main_test.go
package main

import (
"bytes"
"testing"

)

You’ll use the package bytes to manipulate slices of bytes (such as the output
of the tool) and the testing package that provides functions required to test
your Go code.

Follow the same approach to test variations of the integration tests. Start by
defining the test cases using the anonymous struct, followed by the loop to test
each case. The main difference is that you use the run() function defined in
main.go instead of the function filterOut(). Write the integration tests:

fileSystem/walk/main_test.go
func TestRun(t *testing.T) {

testCases := []struct {
name string
root string
cfg config
expected string

}{
{name: "NoFilter", root: "testdata",
cfg: config{ext: "", size: 0, list: true},
expected: "testdata/dir.log\ntestdata/dir2/script.sh\n"},

{name: "FilterExtensionMatch", root: "testdata",
cfg: config{ext: ".log", size: 0, list: true},
expected: "testdata/dir.log\n"},

{name: "FilterExtensionSizeMatch", root: "testdata",
cfg: config{ext: ".log", size: 10, list: true},
expected: "testdata/dir.log\n"},

{name: "FilterExtensionSizeNoMatch", root: "testdata",
cfg: config{ext: ".log", size: 20, list: true},
expected: ""},

{name: "FilterExtensionNoMatch", root: "testdata",
cfg: config{ext: ".gz", size: 0, list: true},
expected: ""},

}

for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
var buffer bytes.Buffer

if err := run(tc.root, &buffer, tc.cfg); err != nil {
t.Fatal(err)

}

res := buffer.String()

• Click HERE to purchase this book now. discuss

Testing with Table-Driven Testing • 9

http://media.pragprog.com/titles/rggo/code/fileSystem/walk/main_test.go
http://media.pragprog.com/titles/rggo/code/fileSystem/walk/main_test.go
http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

if tc.expected != res {
t.Errorf("Expected %q, got %q instead\n", tc.expected, res)

}
})

}
}

Save the main_test.go file and use a terminal to create the files required for
testing. We need to create the directory containing the files we defined in the
test cases earlier. We will use Go’s convention and name this directory testdata,
similarly to what we did in Writing Tests for the Markdown Preview Tool, on
page ?, so that the Go build tool ignores it when compiling the program.

$ mkdir -p testdata/dir2
$ echo "Just a test" > testdata/dir.log
$ touch testdata/dir2/script.sh
$ tree testdata
testdata
├── dir2
│ └── script.sh
└── dir.log

1 directory, 2 files

Execute the tests using the go test -v tool:

$ go test -v
=== RUN TestFilterOut
=== RUN TestFilterOut/FilterNoExtension
=== RUN TestFilterOut/FilterExtensionMatch
=== RUN TestFilterOut/FilterExtensionNoMatch
=== RUN TestFilterOut/FilterExtensionSizeMatch
=== RUN TestFilterOut/FilterExtensionSizeNoMatch
--- PASS: TestFilterOut (0.00s)

--- PASS: TestFilterOut/FilterNoExtension (0.00s)
--- PASS: TestFilterOut/FilterExtensionMatch (0.00s)
--- PASS: TestFilterOut/FilterExtensionNoMatch (0.00s)
--- PASS: TestFilterOut/FilterExtensionSizeMatch (0.00s)
--- PASS: TestFilterOut/FilterExtensionSizeNoMatch (0.00s)

=== RUN TestRun
=== RUN TestRun/NoFilter
=== RUN TestRun/FilterExtensionMatch
=== RUN TestRun/FilterExtensionSizeMatch
=== RUN TestRun/FilterExtensionSizeNoMatch
=== RUN TestRun/FilterExtensionNoMatch
--- PASS: TestRun (0.00s)

--- PASS: TestRun/NoFilter (0.00s)
--- PASS: TestRun/FilterExtensionMatch (0.00s)
--- PASS: TestRun/FilterExtensionSizeMatch (0.00s)
--- PASS: TestRun/FilterExtensionSizeNoMatch (0.00s)
--- PASS: TestRun/FilterExtensionNoMatch (0.00s)

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

PASS
ok pragprog.com/rggo/fileSystem/walk 0.005s

Notice that Go executes all test cases for each test function, using the test
name you configured to present the results. This makes it easier to reference
each test and troubleshoot them in case a test doesn’t pass.

Since the tool is passing all tests, let’s try it out. First, create a small directory
tree in the /tmp directory that you can explore with your program. This struc-
ture will contain some .txt files and some .log files:

$ mkdir -p /tmp/testdir/{text,logs}
$ touch /tmp/testdir/file1.txt
$ touch /tmp/testdir/text/{text1,text2,text3}.txt
$ touch /tmp/testdir/logs/{log1,log2,log3}.log
$ ls /tmp/testdir/
file1.txt logs text

Now try your command-line tool, providing the -root parameter set to the
newly created /tmp/testdir:

$ go run . -root /tmp/testdir/
/tmp/testdir/file1.txt
/tmp/testdir/logs/log1.log
/tmp/testdir/logs/log2.log
/tmp/testdir/logs/log3.log
/tmp/testdir/text/text1.txt
/tmp/testdir/text/text2.txt
/tmp/testdir/text/text3.txt

All the files in the specified directory tree are listed. You can display only log
files by providing the .log extension to the -ext parameter, like this:

$ go run . -root /tmp/testdir/ -ext .log
/tmp/testdir/logs/log1.log
/tmp/testdir/logs/log2.log
/tmp/testdir/logs/log3.log
$

You can also filter results based on the file size, but I’ll leave that as an exer-
cise for you to do later.

This initial version of the tool lists all the files in a directory tree, but listing the
names isn’t useful. So we’ll add another action to make this tool more useful.

• Click HERE to purchase this book now. discuss

Testing with Table-Driven Testing • 11

http://pragprog.com/titles/rggo
http://forums.pragprog.com/forums/rggo

