
Extracted from:

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

This PDF file contains pages extracted from Docker for Rails Developers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

Rob Isenberg

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Adaobi Obi Tulton
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-273-2
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Ruth. In hindsight, writing a book whilst hav-
ing a baby and renovating a house probably
wasn’t the best idea—who knew? Thank you
for your patience, love, and support. None of
this would have been possible without you.

Sammy. I couldn’t have imagined the joy and
love you’d bring into our life. Be kind, be

brave, and be willing to take risks in pursuit
of your happiness and passions. I love you so

much.

Mum and Dad. Thank you for everything.

Acknowledgements
Thanks to Adaobi, my editor at The Pragmatic Bookshelf, for her constant
positivity and encouragement, as well as excellent editing feedback on the
book to help make it as good as it can be. I will miss our updates and bonding
over our mutual love of Gordon Ramsay.

I owe a great deal of thanks to the following people who gave up their valuable
time to read and provide feedback on the book (a thousand apologies if I have
left anyone out):

• John Paul Ashenfelter
• David L. Bean
• Erin Dees
• Chris Johnson
• David Landry
• Nigel Lowry
• Alex Lynham
• Lee Machin
• Rory McCune
• Noel Rappin
• Chris Thorn
• John Yeates

The book is immeasurably better as a result of their contributions.

I’d also like to thank everyone who purchased a beta copy of the book while
it was still being written. In particular, I’d like to thank people who submitted
errata during this process—your confusion, frustration, and pain have
hopefully saved others from suffering the same fate.

Finally, a huge thank you to the entire Pragmatic Bookshelf team for taking
on and supporting this title.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

Introduction
If you love Ruby on Rails, you’re going to love Docker. They are kindred spirits,
born out of similar ideals.

For me, the allure of Rails was its Big Ideas: generators, migrations, testing
as a first-class citizen, convention over configuration, multi-environment
setups built in, live-code reloading. While, individually, these features may
not have been new, the combination made Rails more than the sum of its
parts: it gave us superpowers.

Docker is doing for DevOps what Rails did for web development. It too is packed
with Big Ideas: a holistic view of your app (hint: your app is more than just
your Rails code), containerization (lighter-weight, faster, and more efficient
than VMs), software delivery that doesn’t suck (for example, Ruby installs
the first time you run a Ruby script), fault-tolerant clustering and scaling out
of the box (spin up production-like clusters on your local machine), expert-
level security features baked in (for example, automatic key rotation). The list
goes on.

Docker is lowering the barrier to entry, making DevOps tasks that previously
would have been unthinkable suddenly within our grasp. It gives us a new
set of superpowers.

That said, Docker is not a panacea or a silver bullet to solve all your DevOps
challenges. As with all technologies, there are trade-offs (I’ll try to point these
out as we go). However, despite the trade-offs, as you’ll discover in this book,
there is value in adopting Docker.

What Is Docker?
Docker, the technology, is a set of tools built around the idea of packaging
and running software in small, sandboxed environments known as containers
(we’ll get to the nitty gritty of these in What Is a Container?, on page ?).

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

At a high level, Docker provides five capabilities:

• Packaging. The ability to package software into a reusable, shareable
format known as images.

• Distribution. The ability to easily share packaged software (images) with
other people and deploy it to different machines.

• Runtime. The ability to run, pause, restart, or stop packaged software in
a reliable, repeatable way.

• Infrastructure creation. Creating virtual machines ready to run our Docker
containers.

• Orchestration and scaling. Managing the release of software to a single
Docker node or across an entire cluster.

Together, these five things combine to enable a new way of delivering and
running software.

Why Use Docker?
To build a Rails app, we typically develop on our local machine. Rather than
each team member manually maintaining their own local development envi-
ronments, we can use Docker to provide a common, standardized environment.
This saves on repeated effort and helps avoid many forms of the “works on
my machine” issues that can waste hours.

Other benefits of using Docker for your development environment include:

• A holistic view of your app. Rails apps typically need a database and other
external dependencies like Redis and Elasticsearch. With Docker, these
dependencies are no longer an afterthought or “add-on” like in Heroku;
they are described and managed as fundamental parts of your app.

• Single-command app installation and setup. Have you ever set up a Rails
app on your machine and spent an excessive amount of time installing
specific versions of its software dependencies? Docker’s built-in delivery
mechanism means that new team members can go from zero to a running
app in minutes. No laborious, error-prone, manual setup steps here.

• Easy version management of dependencies. Want to make sure everything
works before switching to a new version of Ruby or upgrading the
database? No problem: running containers is cheap. Just change the
image version and away you go.

Introduction • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

• Huge Docker ecosystem. We frequently need to incorporate other technolo-
gies as part of our Rails apps: NGINX, Redis, Postgres, MySQL, Mem-
cached, Elasticsearch, HAProxy, RabbitMQ, Node, and so on. All these
and more are already packaged and ready to go with Docker.

• Simulate production-like environments locally. We know that how our Rails
app performs in development isn’t exactly the same as in production.
With Docker, you can simulate production scenarios by running your app
in multi-node, production-like environments on your local machine.

Docker can also help once you move beyond development. It provides a con-
sistent interface, whether you’re running locally, on a continuous integration
(CI) server, or deploying to production. Once built, the same image is run at
every stage of your continuous integration/delivery pipeline, giving us confi-
dence that our tested application will perform the same in each environment.

If you need to manage and deploy to your own production infrastructure,
there are further benefits:

• Deployment standardization. Docker provides a standard way of packaging
and delivering applications: each part of your app is a container, and each
app is a collection of containers. From a DevOps perspective, one Docker
app is deployed and managed in the same way as any other.

• Reliability and resiliency features built in. Ever been woken at 3 a.m. by
a cranky CEO because your app’s gone kaput? Docker clusters are self-
healing: if an instance dies, new copies of your app will be spawned on
the remaining nodes.

• Reducing infrastructure costs especially at scale. Containers are much
lighter-weight than virtual machines (VMs), allowing resources to be used
more efficiently. They also let you scale up the number of containers on
a single host rather than spinning up an entire new instance.

• Room to grow. If your app is (or becomes) wildly successful, it’s good to
know that Docker has been battle-tested at massive scale. Google Compute
Engine, for example, is built on Docker containers, using Google’s open
source orchestration tool, Kubernetes.

Who Should Read This Book?
This book is for experienced Rails developers who want to learn how to use
Docker. I’m going to assume, throughout the book, that you’re proficient at
using Rails; this will allow us to focus on learning and applying Docker.

• Click HERE to purchase this book now. discuss

Who Should Read This Book? • xi

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

This book doesn’t aim to be a comprehensive manual on Docker: several
other books serve that aim. Rather, this book is your field manual to building
Rails applications with Docker. We’ll cover the most useful commands and
features that you’ll need, and I’ll refer you to reference material as needed.

If you’re curious to discover how Docker can fit into your day-to-day workflow
as a Rails developer, you’ve come to the right place.

What’s in This Book?
In Part I, you’ll learn everything you need to know about using Docker for
local Rails development, including core concepts like containers and images.
You’ll build up real-world knowledge, step by step, through a series of practical
tasks. We’ll start with the basics—running a Ruby script and generating a
new Rails project—before learning how to run our Rails app by building our
own custom image.

We’ll quickly move on to Compose, a higher-level Docker tool for declaratively
describing an entire app, and how it all fits together. As you learn more, we’ll
gradually layer up services like a database and Redis. We’ll cover how to set
up and run your tests so that you’re fully proficient at using Docker for Rails
development.

In Part II, we’ll explore the process of deploying and running an application
in production. We’ll start by giving you an overview of the production land-
scape—the tools, platforms, and technologies that can be used. Next, using
Docker’s own tools, we’ll provision machines, create a cluster, and deploy our
app. We’ll also scale our app’s resources to meet its changing needs.

How to Read This Book
Docker has a challenging learning curve. It’s a vast tool and ecosystem, and
there’s a lot to understand. Hopefully this book will help—it’s carefully
structured to avoid introducing too many new things at once.

Each chapter builds on the one preceding it, so, especially if you’re unfamiliar
with Docker, I recommend reading the book in sequence to get the most
benefit. Even if you have more Docker experience under your belt already,
this is the recommended approach.

Introduction • xii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

Docker IDs and Following Along Yourself

Docker generates various unique IDs. When following the exam-
ples, it’s important to remember that the IDs generated for you
will be different from those shown in the output. Don’t worry,
though; I’ll point this out where it’s particularly relevant.

Which Operating Systems Are Supported?
Although Docker is supported on all major platforms (macOS, Windows, and
Linux)—and we’ll lead you through the process of installing it on these in
Installing Docker, on page ?—there are some minor differences between the
platforms, particularly around file permissions and networking.

For that reason, I’ve chosen Docker for Mac as the default platform in the
examples and discussion, but I’ll point out any differences between other
platforms when they come up.

Some Linux/Unix Knowledge Is Recommended

Even with Docker on Windows or Mac, there’s no avoiding the
need to understand some Linux basics. Docker evolved out of
Linux kernel features, so explanations and examples often rely on
Linux concepts and programs. I’m going to assume you have this
knowledge already. If not, there are plenty of free resources online
you can use to learn more or brush up if you need to.

Online Resources
You can find useful resources related to the book online,1 including:

• The source code used throughout the book (you’re free to use this in any
way you’d like)

• An errata page, which lists corrections for the current edition

Let’s get started!

1. http://pragprog.com/book/ridocker

• Click HERE to purchase this book now. discuss

Which Operating Systems Are Supported? • xiii

http://pragprog.com/book/ridocker
http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

