
Extracted from:

The Nature of
Software Development

Keep It Simple,
Make It Valuable,

Build It Piece by Piece

This PDF file contains pages extracted from TheNature ofSoftware Develop-
ment , published by the Pragmatic Bookshelf. For more information or to
purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printed versions; the content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Nature of
Software Development

Keep It Simple,
Make It Valuable,

Build It Piece by Piece

Ron Jeffries

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-37-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February, 2015

https://pragprog.com
rights@pragprog.com

You don’t need to “scale” Agile. You just need to do it.

CHAPTER 21

Scaling Agile
There’s a lot of interest in “scaling” Agile these days, and it
has become big business. Large companies have heard the
clarion call of the Agile Buzzword, and just as they didwith
past good ideas like Six Sigma and TQM, now they want to
go Agile. It has become the thing to do. But they’re large
companies. So, naturally, they think they need to scale.

It turns out that in most cases, they’re wrong. They don’t
need to scale. They need to do plain old simple Agile soft-
ware development.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Scaling Agile is good business for scaling vendors. It’s not neces-
sarily good advice for you.

Scaling Agile has become a good business to be in, because
people think they need it. There has always been a decent
market for scaling Agile, so there have always been some
contending approaches to doing it. Now, with the market
for Big Agile growing, there are even more.

I’ll leave it to you to look those up and choose among them
if youmust.What I’d like to do here is to suggest that—with
one possible exception—these approaches are misguided.

That’s not to say that large-scale Agile won’t be successful;
very likely it will be. It will be successful in the sense that
large companies will buy scaling products and ideas, and
consultants and training companies will enrich themselves
selling what these large companies want.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 5

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

As the Rolling Stones remind us, you can’t always get what you
want.

Unfortunately, contrary to the song, a big company can
always get what it wants—in this case lots of expensive
training in some heavy approach that touts itself as Scaled
Agile. And they’ll get some benefit, certainly. Any attention
to improvement is usually better than no attention at all.
And to the extent that these various approaches include
some real Agile ideas, organizations will get some of that as
well.

I’m here to talk about what the song offers: I’m here to talk
about what you need. What does a large company really
need to know about applying Agile ideas throughout?

Chapter 21. Scaling Agile • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Agile is simple—it just isn’t easy.

Agile is quite simple. The most popular Agile approach,
Scrum, has just three roles, a handful of activities, and one
major artifact: running tested software.

That doesn’t meanAgile is easy. It’s still hard to decidewhat
product would be desirable, and it’s still hard to write soft-
ware that doeswhat is asked for. It is, however, quite simple.
Simplicity is the essence of what makes up Agility. So if
Agile is simple, what about so-called scaled Agile?

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 7

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Scaled Agile must be simple—or it isn’t Agile.

Chet Hendrickson points out that since Agile is simple, a
scaled version of Agile should also be that simple, or even
simpler. Otherwise, it will no longer be Agile. We should
look with great suspicion at a so-called “Scaled Agile”
approach that is complex.

Along the same lines, Arlo Belshee suggests that if all your
development teams have become fluent in Agile software
development, scaling is not a problem. If all your teams can
slice stories small, select a number that they can accomplish
in a Sprint (or otherwise within time estimates), and deliver
integrated software that is free of defects, then “scaling”
should be easy. Diana Larsen and Jim Shore, originators of
the notion of fluency in this context, make similar points.

Let’s explore this. Agile is simple (but not easy). If your
individual teams could really execute software development
in the Agile style, might “Scaling Agile” be easy?

Chapter 21. Scaling Agile • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

If your teams are truly Agile…

Agile teams work daily with their business-side associates
(AgileManifesto Principle 4). They deliverworking software
frequently, every couple of weeks (Principle 3). They mea-
sure themselves with working software (Principle 7), work
in a sustainable fashion (Principle 8), and pay constant
attention to technical excellence and good design (Principle
9). And so on.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 9

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

…I mean truly Agile…

Fluent Agile teams, after just a little jostling when they start
up, produce a consistent flow of features, and they drive
defects down to levels far below what the same team
accomplished before they became fluent in Agile.

Fluent Agile teams are visibly Agile, visibly fluent. They get
things truly done, at a consistent and predictable pace. If
your teams are up to that…

…you might already be done.

Chapter 21. Scaling Agile • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

So there you are. All your teams are capable of producing
working software, every twoweeks, working daily with the
business-side people who describe what the team needs to
build.

Youmight be done scaling Agile, if everything your organi-
zation builds can be built by a single Agile team.

Really. Think about this for a moment. If everything you do
could be built by a single small team, scaling Agile comes
down to having each team learn to build in theAgile fashion,
then hooking them up with a business-side person to guide
what they build.

Done. Agile Scaled. No extra work beyond the basics. The
basics are hard enough of course. We’ve explored that else-
where in the book. But there’s no big corporate rollout/tran-
sition/Enterprise Agile that you need to do.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 11

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

What if you want more than one team can do?

A single Agile team that can really do this stuff produces
multiple features every couple of weeks. It’s not easy to keep
even one team working at capacity: you have to have a lot
of product ideas to do it. But maybe you have a huge prod-
uct, like a word processor or some graphics program for
editing photographs. You feel there is enough work there
to keep multiple teams busy.

Well, first of all, prove it. Get a single teamworking on your
product up to Agile quality. Then look at the rate at which
they deliver features. See if you really need more features
than that. Odds are, you won’t: your customers probably
can’t absorb new capability faster than a single team can
deliver. But maybe there is enough work to keep more than
one team busy.

Aha! Now we’ll have to scale Agile…won’t we?

Chapter 21. Scaling Agile • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Feature teams

Well, maybe not. Way back in the last century, the idea of
the feature teamwas devised. A feature team is a small team
whose job it is to deliver features into a product. To getmore
features, you addmore feature teams, all delivering software
into a single product. Want more features per unit time?
Add another feature team, get more features.

There’s not much involved in scaling this way, is there? If
every team knows how to do what a real Agile team knows
how to do, you can add feature teams, and any product
made of features can go as fast as you want.

Aren’twe skipping something?Howdo those teams coordi-
nate? Now we’ve got multiple teams doing features. How
can they avoid stepping on each other’s toes?

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 13

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Agile teams coordinate using tests.

Remember that Agile teams do a large number of small
features every twoweeks. A single team can easily do fifteen
or twenty such features in a two-week iteration. How do
they manage not to get in each other’s way?

It turns out to be simple. Fluent Agile teams build a growing
container of automated checks, using acceptance test-driven
development and test-driven development. These checks
help teams know when they have completed a feature.
However, they also serve as a growing collection of regres-
sion checks that ensure all the features built keep on work-
ing.

If we’re usingmultiple feature teams, it works the sameway.
Each team, every time it builds a new small feature, adds
that feature, with its automated checks, into the common
codebase. All the teams do this daily, just as a single team
would. They keep all the checks running, all the time. If from
time to time a team tries to check something in and tests fail,
they fix the problem before checking in so that the current
codebase always runs all the checks.

Chapter 21. Scaling Agile • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Might there be a conflict between things done across teams?
Possibly, and if that happens, the teams coordinate to see
what happened. But the general practice is quite simple: if
the checkswere running before you put your change in, and
they’re not running after you put your change in, your
change broke something. You find that something, and fix
it, so that all the checks run—yours plus all the historical
ones.

Agile teams do this as a matter of course. They learn to do
smaller and smaller releases. When they use small releases,
the chance that they break something is very small. When
(rarely) they do break something, it’s easy to find the issue,
because only a small amount of code has been added or
changed.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 15

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

OK, feature teams, but what about infrastructure?

If your product is really big enough to use multiple feature
teams, they’ll be relying on some common infrastructure.
What about changes to that?

Sameway.Agile teams change their infrastructure as needed.
They do so freely, every couple of weeks, by supporting
their changes with automated checks. Feature teams can do
the same thing, with each teammaking the changes it needs,
adding checks to the pool, and checking in code frequently.

Will you need a specialized infrastructure team?Quite often,
if you’re fluent in Agile, you won’t. Specialist teams very
often dissolve in an Agile situation. But if you do choose to
have such a team, and they’re Agile, they can smoothly
produce infrastructure changes, supported by automated
checks, in support of multiple feature teams. I recommend
letting your feature teams handle infrastructure changes,
coordinating among themselves as needed. But if you do
choose to have a specialized team for infrastructure, despite
that advice, there’s still no need for special scaling.

Remember, it’s unlikely that you’ll need feature teams at all
if your individual teams can do Agile. But if you do, you
won’t need any special infrastructure to have feature
teams—you just need multiple empowered teams who can,
and will, coordinate among themselves as needed.

Chapter 21. Scaling Agile • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

So far, so good

A company whose work can be done by a single team does
not need anything special to scale Agile. A company with a
need for more features than a single team can handle can
build feature teams, and they won’t need anything else to
scale their Agile process.

In most organizations I’ve seen, the majority of the work is
done by single teams already. In a few, I have seen a product
that is integrated enough, and large enough, where feature
teams might be needed. What else is there?

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 17

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Giant efforts

Some companies undertake truly large efforts,with hundreds
of developers, perhaps even thousands, all working on one
thing. If you’re not in a company like that, maybe all you
need is to get your individual teams able to operate in an
Agile fashion. You could stop reading now, or jump to the
conclusion. But you’re probablywonderingwhat to do about
giant efforts.

Chapter 21. Scaling Agile • 18

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

First, grow the giant incrementally.

If you’re starting a giant effort, even one built on existing
architecture, the standard Agile approach works. Start with
a single team. Build it larger and larger. Build and extend
infrastructure as you go. Add feature teams as you need
them.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 19

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Finally, divide the giant, mostly along feature teams.

Even in giant efforts, it turns out that almost everything
being done is being done by single teams.We already know
how to do those: standard Agile. Just do that.

Even in giant efforts, a few efforts can be improved by
addingmoreworking teams. Do that, and operate them like
feature teams. Standard Agile. Just do that.

What’s left? Is there really something, somewhere, that needs
more than one team, and that can’t be divided up into
smaller efforts that can be done in Agile fashion?

In most cases, I doubt it. I don’t think there are giant efforts
that are truly irreducible. If there are, no one knows how to
do them, Agile or not. The very essence of putting lots of
people on an effort is to divide up the work. If we do not
know how to divide up the work, adding people will not
help.

If we do know how to divide up the work, then, almost
always, the bulk of the work can be done using standard
Agile. Is there enough left to require a complex approach to
scaling? Perhaps. Wait and see; that’s my advice.

Chapter 21. Scaling Agile • 20

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

Bottom line

If your individual teams cannot work in an Agile fashion,
then clearly you’re not ready to “transition” your company
or to “scale”Agile. You don’twant to transition to something
you can’t do, and you don’t want to scale something that
doesn’t work.

First, start creating teams that are very capable of doing
Agile.

Then, give them the most important, most valuable work to
do that your organization can come up with. And stand
back.

Keep creating Agile teams, organized by features where
possible. You may find that you have little need to scale
Agile. More likely, you just have to do it.

• Click HERE to purchase this book now. discuss

Chapter 21. Scaling Agile • 21

http://pragprog.com/titles/rjnsd
http://forums.pragprog.com/forums/rjnsd

