Th
Pra ematic

ogrammers

Risk-First Software

Development
Second Edition

Deliver Better Systems
in a Post-Agile, Al World

Rob Moffat

edited by Kelly Lee

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

Introduction

If you've ever felt that your project is going off the rails despite following all
the “best practices,” this book might be for you. It challenges the idea that
success in software is down to choosing the right methodology. Instead, it
offers a practical and powerful mindset: that software development is a con-
tinuous process of identifying, managing, and responding to risk.

As a reader, picking up this book for the first time, you'll likely find yourself
in one of two camps. For some, this will be a new perspective on software
development — perhaps unfamiliar, even a little suspect. Others who already
operate with this mindset may be wondering if there’s anything new here
worth committing precious time to — hearing ideas you've embraced explained
in a more formal, structured, or rigorous way is, after all, often both affirming
and clarifying.

The job of this book is therefore two-fold: first, to justify this perspective for
the uninitiated—to show how adopting the lens of risk explains why decisions
are made, where projects tend to stumble, and how to deliver software more
purposefully. And for the second camp, it aims to buttress the believers with
new language, new techniques, and new clarity to make the effort of reading
worthwhile.

This perspective is especially timely. The introduction of generative Al tools
is reshaping the developer experience. While these tools can dramatically
boost productivity, they also introduce novel risks: hallucinated code, overre-
liance on automation, gaps in explainability, and a shifting role for human
judgment in design and review.

In a world of accelerating change, the ability to think clearly about risk might
be the most important skill a software developer can possess.

Positioning Risk-First Software Development

Risk-First Software Development reframes software development as an exercise
in managing uncertainty rather than merely executing process. Traditional

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rmrfsd
http://forums.pragprog.com/forums/rmrfsd

Introduction ® iv

methodologies often treat risk as a peripheral concern—something to be
noted in passing or tracked in spreadsheets. This book argues that risk is
not peripheral; it is the core driver of every decision made during software
creation.

By placing risk front and center, Risk-First provides a framework that tran-
scends methodology and technology. It doesn’t compete with Agile, Waterfall,
or DevOps—instead, it explains them. Each is revealed to be a response to
certain categories of risk. By understanding this, you can move beyond dogma
and apply the right tools to the right problems, with full awareness of the
trade-offs involved.

If you are a seasoned software professional, you will have seen this before
and probably already see your job as a risk manager. Nevertheless, sometimes
its important to step back and explain why we work in a certain way. This
book is an attempt to do that.

Background to the First Edition - A Quick History

The first edition of Risk-First Software Development was written in 2019 and
occurred due to a specific set of circumstances. I'd spent my career working
in investment banking technology, specifically building systems for estimating
risk — how much money a bank might lose on a given day. But, burnt out
after many years of this, I switched gear and began working on an exciting
new project with some talented co-workers in building chatbots and applica-
tions based on chat platforms (specifically, Microsoft Teams and Symphony).
We were trying out Scrum as a way to build the software. I'd spent most of
my career trying to adopt agile practices in my industry and over the 25 years
since Kent Beck wrote XP: Extreme Programming Explained [BecOO], momentum
had boon bullding, T

The only problem was that I was building one application whilst everyone
else was working on something completely different. Nevertheless, reporting
lines being what they were, I attended the retrospectives and the stand-up
meetings and tried to help out with story points.

It was very clear that this wasn’t how things were supposed to work: the
meaningless rituals and behaviours we were engaging in so that we could
variously say “we’re doing Scrum properly” or “I'm a Scrum-Master” or “Two
years of experience managing Agile projects” (on a CV) were consuming time
that could be better spent elsewhere. Worse than that, these practices
amplified the divisions and tensions in the team and became a stick to beat
people with: politics had taken over and instead of focusing on what was best

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rmrfsd
http://forums.pragprog.com/forums/rmrfsd

Back To Risk ® v

for the project, adherence to process became a tool for tracking obedience
and delivering functionality to customers took a backseat.

This was a trying project and not because of Scrum: political problems required
political solutions. Some of us were eventually able to “work the org chart”
in our favour and escape into less divisive teams and deliver amazing products.
Nevertheless, I am thankful for the experience since it allowed me to under-
stand first-hand some of the rumblings I had observed on internet forums
about the misapplication of Agile practices and how they were not the panacea
that many consultancies and Agile thought-leaders claimed them to be.

Back To Risk

The irony is that in looking at these problems I realise that I had come back
to risk. When I compared the tasks I was assigned to do with the ones I felt
it was most critical to do, the underlying factor was the amount of risks those
tasks addressed. Having spent a decade before writing risk systems for banks,
I now realised that this was exactly what was missing from our approach to
software development.

Obviously, I was not the only one. Other teams around me were beginning to
talk in abstract terms about risk and de-risking. Risk Management has always
been part of the project manager’s lexicon and remit. The very start of XP:

risk.” Bubbling under the surface, this has always been there, but perhaps
it doesn'’t sell training courses or workshops? Perhaps it isn’t “cool” enough?
It isn’t really affected much by technology trends or the new shiny. Maybe it
isn’t glamorous enough? The idea of careful risk management runs counter
to every Hollywood action movie plot (although see chapter 4 on page ? for
an exception). It’s the antithesis of the “rockstar programmerldealbut my
thinking is that if you really want to be a rockstar programmer, building your
risk management instinct is the way to get there. (As far as I know where

“there” is, anyway.)

Introduction to the Second Edition

I'm writing this second edition in 2025, working for the Linux Foundation in
an organisation called “FINOS”. The goal of FINOS is to act as an open source
software foundation for the financial services industry. The industry finds
itself in an interesting place: on the one hand, the business of money is being
re-thought by crypto-currencies and FinTech startups. The technology land-
scape is increasingly fast-moving and turbulent. But equally, the burden of
regulation is greater than ever and consumes more and more of the budget.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rmrfsd
http://forums.pragprog.com/forums/rmrfsd

Introduction ® vi

There is a palpable excitement/fear around Al tools and how they might re-
shape not just the industry but society as a whole. Open Source offers an
opportunity to mutualise risk across the industry. Unfortunately, there are
lots of well-meaning regulations (e.g. insider dealing, customer confidentiality
and data leakage prevention) which inadvertently make it very hard to engage
firm-to-firm on public projects. But increasingly, the types of software project
we see at FINOS are focused on risk management for one form of risk or
other: cyber-security risks, Al risks or open source risks, for example. From
this unique vantage point, the case for software development being all about
risk management has never been stronger. So this second edition is able to
look at how the finance industry, the software development community and
society as a whole are reacting to these technological forces and comment on
the increasing importance of risk management in dealing with them.

How This Book Is Structured

This book is structured in three parts. Part One guides you through a com-
prehensive exploration of the idea that risk is the central concern in software
development. It begins by laying the conceptual groundwork, introducing risk
as the lens through which all software development activity can be understood.
The early chapters build a foundational language and toolkit: terms, diagrams,
and ways of thinking that allow risk to be discussed explicitly and productively.
You are gradually shown how risk already underpins development processes
and how acknowledging that directly can lead to healthier projects and more
deliberate decision-making. As it progresses, it shifts from theory, to tools,
to application within the project team and wider organisation.

Part Two starts with examining how different methodologies (e.g. Agile,
Waterfall or DevOps) are essentially collections of practices for managing
various kinds of risk and looking at the importance of patterns as a way of
classifying the different risks we see. From there, it delves into specific risk
patterns you find in software projects: the risks inherent in building features,
relying on dependencies, constructing models, and operating in broader legal
and social environments. Each risk is framed as a pattern and comes with a
spotter’s guide to common causes of the risk and practical tools on how they
can be mitigated or leveraged. The concept of a “risk pattern language” emerges
here as a unifying structure.

In its final part, the book turns to the broader implications of a Risk-First
mindset. It looks at how risk management is becoming the discipline for
dealing with the increasing criticality and complexity of software-based systems
in the modern world. It culminates in a forward-looking discussion of Al-

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rmrfsd
http://forums.pragprog.com/forums/rmrfsd

Online Resources ® vii

related risk specifically and technology risk generally and analyses how
society will need to deal with them.

Online Resources

The Risk-First website' contains a lot of additional resources and is frequently
mentioned throughout this book. If you want to join in discussions or help
with content, then you can get an invite to the Github Risk-First team by
adding your star to the Github repository.>

You can also find this book’s online forum and errata on The Pragmatic
Bookshelf website.’

1.  https://riskfirst.org

3.

« Click HERE to purchase this book now. discuss


https://riskfirst.org
https://github.com/riskfirst/website
https://pragprog.com/titles/rmrfsd
http://pragprog.com/titles/rmrfsd
http://forums.pragprog.com/forums/rmrfsd

