
Extracted from:

Text Processing with Ruby
Extract Value from the Data That Surrounds You

This PDF file contains pages extracted from Text Processing with Ruby, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Text Processing with Ruby
Extract Value from the Data That Surrounds You

Rob Miller

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Cathleen Small; Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-070-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 3

Shell One-Liners
We’ve looked at processing text in Ruby scripts, but there exists a stage of
text processing in which writing full-blown scripts isn’t the correct approach.
It might be because the problem you’re trying to solve is temporary, where
you don’t want the solution hanging around. It might be that the problem is
particularly lightweight or simple, unworthy of being committed to a file. Or
it might be that you’re in the early stages of formulating a solution and are
just trying to explore things for now.

In such cases, it would be advantageous to be able to process text from the
command line, without having to go to the trouble of committing your thoughts
to a file. This would allow you to quickly throw together text processing
pipelines and scratch whatever particular itch that you have—either solving
the problem directly or forming the foundation of a future, more solid solution.

Such processing pipelines will inevitably make use of standard Unix utilities,
such as cat, grep, cut, and so on. In fact, those utilities might actually be suffi-
cient—tasks like these are, after all, what they’re designed for. But it’s common
to encounter problems that get just a little too complex for them, or that for
some reason aren’t well suited to the way they work. At times like these, it
would nice if we could introduce Ruby into this workflow, allowing us to
perform the more complex parts of the processing in a language that’s familiar
to us.

It turns out that Ruby comes with a whole host of features that make it a
cinch to integrate it into such workflows. First, we need to discover how we
can use it to execute code from the command line. Then we can explore dif-
ferent ways to process input within pipelines and some tricks for avoiding
lengthy boilerplate—something that’s very important when we’re writing
scripts as many times as we run them!

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

Arguments to the Ruby Interpreter
You probably learned on your first day of programming Ruby that you can
invoke Ruby from the command line by passing it the filename of a script to
run:

$ ruby foo.rb

This will execute the code found in foo.rb, but otherwise it won’t do anything
too special. If you’ve ever written Ruby on the command line, you’ll definitely
have started Ruby in this way.

What you might not know is that by passing options to the ruby command,
you can alter the behavior of the interpreter. There are three key options that
will make life much easier when writing one-liners in the shell. The first is
essential, freeing you from having to store code in files; the second and third
allow you to skip a lot of boilerplate code when working with input. Let’s take
a look at each them in turn.

Passing Code with the -e Switch
By default, the Ruby interpreter assumes that you’ll pass it a file that contains
code. This file can contain references to other files (require and load statements,
for example), but Ruby expects us to pass it a single file in which execution
will begin.

When it comes to using Ruby in the shell, this is hugely limiting. We don’t
want to have to store code in files; we want to be able to compose it on the
command line as we go.

By using the -e flag when invoking Ruby, we can execute code that we pass
in directly on the command line—removing the need to commit our script to
a file on disk. (It might be helpful to remember -e as standing for evaluate,
because Ruby is evaluating the code we pass contained within this option.)
The universal “hello world” example, then, would be as follows:

$ ruby -e 'puts "Hello world"'
Hello world

Any code that we could write in a script file can be passed on the command
line in this way. We could, though it wouldn’t be much fun, define classes
and methods, require libraries, and generally write a full-blown script, but
in all likelihood we’ll limit our code to relatively short snippets that just do a
couple of things. Indeed, this desire to keep things short will lead to making

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

choices that favor terseness over even readability, which isn’t usually the
choice we make when writing scripts.

This is the first step toward being able to use Ruby in an ad hoc pipeline: it
frees us from having to write our scripts to the filesystem. The second step
is to be able to read from input. After all, if we want our script to be able to
behave as part of a pipeline, as we saw in the previous chapter, then it needs
to be able to read from standard input.

The obvious solution might be to read from STDIN in the code that we pass in
to Ruby, looping over it line by line as we did in the previous chapter:

$ printf "foo\nbar\n" | ruby -e 'STDIN.each { |line| puts line.upcase }'
FOO
BAR

But this is a bit clunky. Considering how often we’ll want to process input
line by line, it would be much nicer if we didn’t have to write this tedious
boilerplate every time. Luckily, we don’t. Ruby offers a shortcut for just this
use case.

Streaming Lines with the -n Switch
If we pass Ruby the -n switch as well as -e, Ruby will act as though the code
we pass to it was wrapped in the following:

while gets
execute code passed in -e here

end

This means that the code we pass in the -e argument is executed once for
each line in our input. The content of the line is stored in the $_ variable. This
is one of Ruby’s many global variables, sometimes referred to as cryptic globals,
and it always points to the last line that was read by gets.

So instead of writing the clunky looping example that we saw earlier:

$ printf "foo\nbar\n" | ruby -e 'STDIN.each { |line| puts line.upcase }'
FOO
BAR

we can simply write:

$ printf "foo\nbar\n" | ruby -ne 'puts $_.upcase'
FOO
BAR
</code>
<p> There's more to <inlinecode>$_</inlinecode> than this, though.

Ruby also defines some global methods that either act on

• Click HERE to purchase this book now. discuss

Arguments to the Ruby Interpreter • 7

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

<inlinecode>$_</inlinecode> or have it as a default argument.
<ic>print</ic> is one of them: if you call it with no arguments,
it will output the value of <inlinecode>$_</inlinecode>. So we
can output the input that we receive with this short script:

</p>
[code language="session"]
$ printf "foo\nbar\n" | ruby -ne 'print'
foo
bar

This implicit behavior is particularly useful for filtering down the input to
only those lines that match a certain condition—only those that start with f,
for example:

$ printf "foo\nbar\n" | ruby -ne 'print if $_.start_with? "f"'
foo

This kind of conditional output can be made even more terse with another
shortcut. As well as print, regular expressions also operate implicitly on $_.
We’ll be covering regular expressions in depth in Chapter 8, Regular Expres-
sions Basics, on page ?, but if in the previous example we changed our
start_with? call to use a regular expression instead, it would read:

$ printf "foo\nbar\n" | ruby -ne 'print if /^f/'

This one-liner is brief almost to the point of being magical; the subject of both
the print statement and the if are both completely implicit. But one-liners like
this are optimized more for typing speed than for clarity, and so tricks like
this—which have a subtlety that might be frowned upon in more permanent
scripts—are a boon.

There are also shortcut methods for manipulating input. If we invoke Ruby
with either the -n or -p flag, Ruby creates two global methods for us: sub and
gsub. These act just like their ordinary string counterparts, but they operate
on $_ implicitly.

This means we can perform search and replace operations on our lines of
input in a really simple way. For example, to replace all instances of COBOL
with Ruby:

$ echo 'COBOL is the best!' | ruby -ne 'print gsub("COBOL", "Ruby")'
Ruby is the best!

We didn’t need to call $_.gsub, as you might expect, since the gsub method
operates on $_ automatically. This is a really handy shortcut.

Handy shortcuts are nice to have, but these techniques are fundamentally
useful, too. This line-by-line looping that we achieve with -n enables many

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

types of processing. We’ve seen conditional output, where we output only those
lines that match certain criteria, and we’ve seen filtering, where we output a
modified form of our input. Many scripts involve both of these steps, sometimes
even multiple times.

In a full-blown script, we might not consider these to be distinct steps in a
process, worthy of considering separately. We certainly wouldn’t write multiple
scripts, one to handle each one of them. But it can often help when writing
a one-liner to frame things in this way. For example, let’s take the following
text file, which contains the names of students and their scores on a test:

Bob 40
Alice 98
Gillian 100
Fred 67

Let’s imagine we want to output the name of any student who scored more
than 50 on the test (sorry, Bob). There are two steps here: conditional output,
to select only those students who scored more than 50; and filtering, to show
only the name, rather than the name and score together. With a one-liner, it
makes sense to treat those two things separately.

The first step is typically to output the contents of the file. This is an important
psychological step, if nothing else, because it validates that the data is there
and is in the format we’re expecting:

$ cat scores.txt
Bob 40
Alice 98
Gillian 100
Fred 67

Next, we need to perform our filtering step. In this case, we need to take the
second word of the line, convert it to a number, and check whether it’s greater
than 50:

$ cat scores.txt | \
ruby -ne 'print if $_.split[1].to_i > 50'

Alice 98
Gillian 100
Fred 67

(The \ characters at the end of the line escape the line break, meaning that
when you press Enter a newline is inserted rather than the shell executing
the command you’ve typed. They’re included here just to keep lines shorter
on the page; although you can type them into your shell, in practice you
wouldn’t.)

• Click HERE to purchase this book now. discuss

Arguments to the Ruby Interpreter • 9

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

Finally we perform our filter step, to output only the names:

$ cat scores.txt | \
ruby -ne 'print if $_.split[1].to_i > 50' | \
ruby -ne 'puts $_.split.first'

Alice
Gillian
Fred

Although we could potentially have performed these two steps together,
breaking up the problem in this way has two important advantages. The first
is performance: the two steps will run in parallel, so on greater input we might
see a speedup. The second, though, is that we might discover that a particular
step can be performed with an existing tool—in which case there’s no need
write any code of our own. That’s the case here, in fact. We could have used
cut for the second step:

$ cat scores.txt | \
ruby -ne 'print if $_.split[1].to_i > 50' | \
cut -d' ' -f1

Alice
Gillian
Fred

Here we tell cut that we want to delimit text by the space character, and to
take the first field. If we keep our commands small and have them do just
one job, then they’re easier to compose together—either with more scripts of
our own or with commands that already exist. That means solving problems
more quickly and with less typing, which is always one of our goals when
programming.

The -n switch is very useful, but Ruby has more one-liner gifts. There’s
another useful option that makes it even easier to write filter scripts.

Printing Lines with the -p Switch
We’ve seen that, when writing scripts to perform filter operations on input,
we’re very often taking a line of input, making a modification to it, and then
outputting it. This pattern is common enough that Ruby offers us another
switch to help: -p.

Used instead of -n, the -p switch acts similarly in that it loops over each of the
lines in the input. However, it goes a bit further: after our code has finished,
it always prints the value of $_. So, we can imagine it as:

while gets
execute code passed in -e here
puts $_

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

end

Generally, it’s useful when the code we pass using -e does something that
modifies the current line, but where that output isn’t conditional—in other
words, where we’re expecting to modify and output every line of the input.

So, returning to our find-and-replace example, we could use gsub! to modify
the contents of $_:

$ echo 'COBOL is the best!' | ruby -pe '$_.gsub!("COBOL", "Ruby")'
Ruby is the best!

However, we can go shorter still. This operation is so common that Ruby
provides a shortcut for it:

$ echo 'COBOL is the best!' | ruby -pe 'gsub("COBOL", "Ruby")'
Ruby is the best!

We know that the global gsub method operates on $_, but it also modifies it.
In that sense, it operates like $_.gsub!. So after our call to gsub, $_ has been
modified, and the implicit puts outputs our transformed text.

• Click HERE to purchase this book now. discuss

Arguments to the Ruby Interpreter • 11

http://pragprog.com/titles/rmtpruby
http://forums.pragprog.com/forums/rmtpruby

