Extracted from:

Getting Clojure

Build Your Functional Skills One Idea at a Time

This PDF file contains pages extracted from Getting Clojure, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic

ogrammers

Getting
Clojure

Build Your Functional Skills
One Idea at a Time

)
.l ®
&,
‘c® . o .o
] o .. - e ° °®
‘% . °
Y @ ¢ °~:. . ©
“ ()
A Ko
o © ¢
. Russ Olsen

edited by Michael Swaine



Getting Clojure

Build Your Functional Skills One Idea at a Time

Russ Olsen

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Michael Swaine
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-300-5

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—May 2018


https://pragprog.com
support@pragprog.com
rights@pragprog.com

To

Milkey
Felicia
Jackson
Charlie & Jennifer
Tim & Emily & Evan
Nicholas & Jonathan
Meg & Alex & Zachary
and

Scott Downie

The future is in your hands.



This is where the fun starts: In this chapter I'm going to take you through
the basic elements of Clojure, at the just enough knowledge to be dangerous
level. By the time you get to the end of this chapter you’ll be familiar with
Clojure’s very simple syntax and you’ll know about many of the basic Clojure
data types. Most importantly, you will be able to create and use the funda-
mental unit of Clojure code, the function. A couple of things to keep in mind
as you read:

First, I can’t actually teach you Clojure. All I can do is to serve as your guide,
to take you around, show you the sights, point out the cool bits, and warn
you about the occasional pothole. It’s up to you, armed with patience and a
keyboard, to do the real work of exploring the land of Clojure.

Second, know that Clojure is worth the effort. Clojure enables you to write
clean, compact code that does what you want it to do. In fact, as we go along
you'll discover that the Clojure way of programming provides enormous
power wrapped up in lovely, elegant code. Let’s get started.

The Very Basics

To get started you need to install some development tools. There’s a wide
selection of Clojure development environments and build tools available—every-
thing from the clj tool that comes packaged with Clojure starting with version
1.9 to the IntelliJ-based Cursive to Emacs and Cider and boot.' > ® * ° ¢ But
in this book we're mostly going to stick to the popular Clojure development
tool Leiningen. So if you haven't already, head over to the Leiningen website
and follow the installation instructions for your operating system.” While
you're there, you might also note that it’s pronounced LINE-ing-en.

By tradition, the first program you write when learning a programming lan-
guage simply prints a greeting. Here’s the Clojure version:

hello/examples.clj
(println "Hello, world!") ; Say hi.

N Ok 0N

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/roclojure/code/hello/examples.clj
https://clojure.org/guides/deps_and_cli
https://www.jetbrains.com/idea
https://cursive-ide.com
https://www.gnu.org/software/emacs
https://github.com/clojure-emacs/cider
https://github.com/boot-clj/boot
https://leiningen.org
http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

°8

To keep things simple, we’ll take our first stab at Hello, World in the Clojure
REPL, a handy utility that lets you type in code and see it evaluated right
here, right now. The command to start a REPL with Leiningen is as follows:

$ lein repl
And once you have the REPL running you can type in this code:

user=> (println "Hello, world!") ; Say hi.

And see the familiar greeting:

Hello, world!

nil

Don't fret about the nil; that’s just the value returned by printin after it does its
thing, which the REPL helpfully printed for us.

REPL Who?
The REPL is one of the few programs whose name is its algorithm.
All the REPL does is read some code—the code you type in—eval-
uate the code, print the result, and then loop back to read some
more code: Read. Evaluate. Print. Loop.

One of the things that has made Hello, World such a popular first program
is just how much we can learn from that single line of code. Looking at our
Clojure Hello, World, we can work out that in Clojure strings come "wrapped in
double quotes".

We can also see that comments start with a semicolon and run to the end of
the line. Typically Clojure programmers will use a single semicolon when they
add a comment to the end of a line with some code—as we did in the exam-
ple—but will double up on the semicolons if the comment is all alone on its
own line:

hello/examples.clj
;; Do two semicolons add up to a whole colon?

(println "Hello, world!") ; Say hi

More subtly, we can deduce that Clojure treats simple, unadorned names like
println as identifying things that get looked up. Thus our little program only worked
because printin is the name of a predefined function, one that comes to us courtesy
of Clojure itself. As you might expect, Clojure predefines a whole range of
other handy functions. There is, for example, str, which takes any number of
values, converts them to strings, and concatenates the whole thing together:

(str "Clo" "jure") ; Returns "Clojure".

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/roclojure/code/hello/examples.clj
http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Arithmetic ®* 9

(str "Hello," " " "world" "!") ; Returns the string "Hello, world!"
(str 3" " 2" " 1" Blast off!") ,; Fly me to the Moon!
There is also count, which will tell you how long your string is:

(count "Hello, world") ; Returns 12.
(count "Hello") ; Returns 5.

(count "") ; Returns 0.

Clojure also comes with a number of predefined constants. For example, we
have the Boolean siblings true and false:

(println true) ; Prints true..

(println false) ; ...and prints false.

There is also nil, which is Clojure’s version of the “nobody’s home” value,
known in some languages as null or None:

(println "Nobody's home:" nil) ; Prints Nobody's home: nil

Note that println will print just about anything you throw at it, so that if we
run this:

(println "We can print many things:" true false nil)
we’ll see
We can print many things: true false nil

You've probably noticed something odd about the parentheses in a Clojure
function call: they are on the outside. It’s

(println "Hello, world!")
not
println("Hello, world!")

If you're coming to Clojure from a more traditional programming language,
those parentheses will look out of place. There is a method to the Clojure
syntax madness, which we'll return to in Read and Eval. For now let's just

note that the Clojure syntax for making something happen—such as calling
a function— is to wrap the something in round parentheses, and move on.

Arithmetic

Another thing that usually comes early in learning a programming language
is figuring out how to do basic arithmetic. Clojure’s approach to doing math

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

°10

is refreshingly—and perhaps a little disconcertingly—simple. To see what this
means, let’s add a couple of numbers together:

(+ 1900 84)

Run the expression in that example through the REPL and you will get back
1984. You do multiplication, subtraction, and division in the same way:
(* 16 124) ; Gives you 1984.

(- 2000 16) , 1984 again.
(/ 25792 13) ; 1984 yet again!

As you might expect, you can assemble these basic math operations into
arbitrarily complex expressions. Thus you can get the average of 1984 and
2010 with this:

(/ (+ 1984 2010) 2)

Arithmetic in Clojure can be a bit disorienting at first, a disorientation that
can be summed up by the question Why is the + first? or perhaps What hap-
pened to my nice infix operators? The answer is that Clojure is trading some
convenience, in the form of the familiar infix operators, for simplicity. By
treating the arithmetic operators like ordinary functions, Clojure manages to
keep the syntax of the language uniform. In Clojure, no matter what you are
doing, you do it by saying

(verb argument argument argument...)

This means that in the same way we print the string "hello" with (printin "hello"),
we add two numbers with (+ 1982 2) and we divide them with (/ 25792 13). It’s

always the thing we want to do, followed by any arguments, all wrapped in
round parentheses.

Conveniently, the basic math operators/functions take a variable number of
arguments. Thus we can add up a bunch of numbers with this:

(+ 1000 500 500 1) ; Evaluates to 2001.

or do a running subtraction with this:

(- 2000 10 4 2) ; Evaluates to 1984;

There is one other twist lurking in the math functions, specifically in
the / (division) function. Many programming languages, when asked to divide
one integer by another, will give you back a truncated integer result. For
example, in Ruby or Java when you divide 8 by 3 you get 2. Not so in Clojure,
where (/ 8 3) will give you 8/3, which is a ratio, one of Clojure’s built-in data

types.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Not Variable Assignment, but Close ® 11

To get the familiar integer truncating behavior, you need to use the quot—short
for quotient—function. So one way to get 2 is to write (quot 8 3).

By default, Clojure turns unadorned numeric literals like 8 and 3 and 4976
into integers. If you are interested in numbers with decimal points, Clojure
also offers the familiar floating-point notation. Here’s our averaging expression
again, this time using floating-point numbers:

(/ (+ 1984.0 2010.0) 2.0)

Clojure also provides a sensible set of numeric promotions, so that if you add
an integer to a floating-point number, perhaps (+ 1984 2010.0), you will get back
a floating-point number—in this case 3994.0—for your trouble.

Not Variable Assignment, but Close

Once you get beyond the add a few numbers together stage you naturally
start looking for a way to hang a name on the result. The most straightforward
way to do that in Clojure is with def:

(def first-name "Russ")

There are very few surprises in using def. You give it an identifier—Clojure
calls this a symbol—and a value, and def will associate, or bind, the symbol
to the value. In this example the symbol is first-name and the value is the string
"Russ". The value that you supply to def gets evaluated, so it can be any expres-
sion. So evaluating this

(def the-average (/ (+ 20 40.0) 2.0))
Will bind 30.0 to the-average.

One thing that you might find surprising is that it’s the-average and not theAverage
or the_average or even TheAverage. While the Clojure language is gloriously easygoing
when it comes to the characters you can use in a symbol—this&that|other and

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

°12

Much=M#re! are both fine—Clojure programmers have adopted the all-lower-case-with-
words-separated-by-dashes convention—also known as kebab case—when picking
symbols, so it’s first-name and the-average.

A note of caution: def is great when you're just playing around or debugging
in the REPL, but it’s not the direct analog of traditional variable assignment
that it seems. We'll get back to the distinction in Def, Symbols, and Vars, but

for now we’ll put that aside and continue to def things with wild abandon.

Symbolic Rules?
As I say, there are very few rules about the characters that can
go into a symbol. But there are some: You can’t, for example
include parentheses, square brackets, or braces in your symbols
since these all have a special meaning to Clojure. For the same

0 reason, you can’'t use the @ and ~ characters in your symbols.

There are also some special rules for the first character of your
symbols: you can’t kick your symbol off with a digit—it would be
too easily confused with a number—and symbols that start with
a colon are not actually symbols but rather keywords, which we’ll
talk about in Maps, Keywords, and Sets.

A Function of Your Own

Let’s return to our Hello, World example and see if we can turn our one-liner
into something more worthy of the name program. We can do this by wrapping
it with the fundamental unit of Clojure code, the function:

(defn hello-world [] (println "Hello, world!"))

Once you have hello-world defined you can call it just like any other Clojure
function, so that if you run

(hello-world)
You will see Hello, world! printed.

As with the original, you can learn a lot from this new version of Hello, World.
For example, you can see that the function definition kicks off with defn instead
of def and is wrapped in its own set of parentheses on the outside. Inside the
defn we have the function parameters, set off with square brackets, []. Since
our hello-world function doesn’t have any parameters, there is nothing inside
of its brackets.

While we wrote the original version of Hello, World entirely on one line, we
could have spread the defn over a couple of lines:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

A Function of Your Own * 13

(defn hello-world []
(println "Hello, world!"))

It’s all the same to the compiler because Clojure mostly ignores whitespace.

Clojure programmers do, however, have opinions about whitespace. By con-
vention, you can either write a short function on a single line or spread it out
over a couple of lines as we did in the last example. Longer functions should
take up as many lines as they need. Clojure programmers also have a strong
opinion about indentation, one that we followed in the example: each level of
indentation is done with two spaces. There are exceptions to the two-space
rule, mostly around lining up function arguments and the like. But for the
moment we’ll stick to two spaces. And note it’s always spaces, no tabs allowed.

Sans Tabs?

Why no tabs? Because one of the great mysteries of programming
o is the exchange rate between tabs and spaces. Is it four spaces to
a tab? Eight? Three? It's safer to stick to spaces.

Writing a function with a parameter or two is also straightforward: just put
the parameter names in the brackets and then use them inside the function
body. Here’s a greeting function that takes a single parameter:

(defn say-welcome [what]
(println "Welcome to" what))

The say-welcome function takes one parameter, called what, and prints an appro-
priate greeting. Calling your new function is like calling the println function,
so that if you do this:

(say-welcome "Clojure")
you should see a friendly greeting:

Welcome to Clojure

Happily, we can rely on printin to supply the spaces around the values that it
prints so that we see “Welcome to Clojure” and not “Welcome toClojure.”

Now that we have the basic function-building mechanics down, let’s see if we
can create a function that does something useful:
;, Define the average function.

(defn average [a b]
(/ (+ ab) 2.0))

;; Call average to find the mean of 5.0 & 10.0.

(average 5.0 10.0) ; Returns 7.5

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

The average function takes a couple of numbers and returns their arithmetic
mean. There are three things to note about the average function. The first is
the comma between the two parameters: it’s not there. In contrast to many
programming languages, Clojure never requires you to sprinkle commas in
when you're writing a sequence of items such as the parameter list of a
function. A bit of whitespace between the items is plenty. But if you really
miss the commas, you can put them in: Clojure treats commas as whitespace.
Clojure programmers mostly dispense with commas.

The second thing to note about average is that there is no explicit return state-
ment. Clojure functions just return whatever they compute. More precisely,
they return the last thing computed by the function. We need the qualifier
because you can have more than one expression inside of your function body.
Here, for example, is a variation on average that has a four-expression body:

(defn chatty-average [a b]
(println "chatty-average function called")
(println "** first argument:" a)
(println "** second argument:" b)
(/ (+ ab) 2.0))

You can probably guess what happens when you evaluate chatty-average:

(chatty-average 10 20)

Each expression inside the body gets evaluated in turn, so that you would
see this:

chatty-average function called
** first argument: 10
** second argument: 20

Since the last expression supplies the return value, the function returns 15.0.

The final thing to note about average is that there are no type declarations,
nothing stating explicitly that a and b must now and forever be numbers. Nor
is there anything declaring what the function returns. In the great “static
versus dynamic typing” trade-off, Clojure has chosen the flexibility and
terseness of dynamic typing.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure



