Extracted from:

Getting Clojure

Build Your Functional Skills One Idea at a Time

This PDF file contains pages extracted from Getting Clojure, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic

ogrammers

Getting
Clojure

Build Your Functional Skills
One Idea at a Time

)
.l ®
&,
‘c® . o .o
] o .. - e ° °®
‘% . °
Y @ ¢ °~:. . ©
“ ()
A Ko
o © ¢
. Russ Olsen

edited by Michael Swaine

Getting Clojure

Build Your Functional Skills One Idea at a Time

Russ Olsen

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Michael Swaine
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-300-5

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—May 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To

Milkey
Felicia
Jackson
Charlie & Jennifer
Tim & Emily & Evan
Nicholas & Jonathan
Meg & Alex & Zachary
and

Scott Downie

The future is in your hands.

CHAPTER 19

Read and Eval

Programming-language syntax is a lot like politics: very few people do it for
a living but virtually everyone has an opinion. And many have strong opinions.
Certainly it’s not hard to find strong opinions about Clojure’s syntax. Many
of us love what we see as its elegant terseness while some programmers can
only see parentheses. Lots and lots of parentheses.

Clojure’s somewhat odd syntax is not the shady outcome of a conspiracy of
parentheses manufacturers. Nor is it a completely arbitrary esthetic choice.
Clojure’s syntax is an integral part of how the language works. So in this
chapter we're going to look at the two critical functions at the heart of Clojure,
read and eval, and at how they relate to all those parentheses. Along the way
we’ll take a moment to write our own version of eval, essentially building our
very own toy Clojure implementation.

If all that sounds intimidating, take heart: like everything else in Clojure, read
and eval are simple. They are also critical to getting to the next level of insight
into how the language works. So let’s get started.

You Got Data On My Code!

If you have read this far you probably noticed something odd about the syntax
of Clojure code: it looks a lot like the syntax of Clojure data literals. If, for
example, you started with this bit of nonsensical Clojure data:

read/examples.clj
;; Just some data: Note the quote.

'(helvetica times-roman [comic-sans]
(futura gil-sans
(courier "All the fonts I have loved!")))

you know you have a four-element list that contains a couple of symbols along
with a vector and another list. But by swapping out the symbols and changing

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/roclojure/code/read/examples.clj
http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Chapter 19. Read and Eval ¢ 8

contents of the string, you can transform that data into something convinc-
ingly codelike:

;; Still just data -- note the quote.

'(defn print-greeting [preferred-customer]
(if preferred-customer
(println "Welcome back!")))

This last example is still just a four-element list of data—notice the quote at
the front—but it’s also a dead ringer for a Clojure function definition. You
can, in fact, turn your data into actual code by removing the quote:

;; Now this is code!

(defn print-greeting [preferred-customer]
(if preferred-customer
(println "Welcome back!")))

This little journey from data to code underlines the fundamental idea of Clojure
syntax: Clojure code looks like Clojure data because in Clojure code is data.
Clojure uses the same syntax and data structures to represent both code and
data. So Clojure function calls don't just look like lists; they are lists. The
arguments to your function definitions don’t get wrapped in things that look
like vectors; they are vectors. Languages that support this sort of code equals
data equation are said to be homoiconic.

Reading and Evaluating

To make all this theory a bit more real, let's dive into the machinery that
Clojure uses to read data and execute code. Actually, calling it machinery is
overstating things since we're talking about two functions, one mundane and
one wonderful. The mundane function is read and it does exactly what its
name suggests: it reads data. Feed read a character-producing input
stream—perhaps an open file or a network connection or your terminal—and
it will read and return one Clojure value. Conveniently, if you just call read
without any parameters, it will read from standard input. So if you call (read)
in the REPL like this:

user=> (read)

then read will sit there quietly, waiting for you to type something in. So enter
55, and read will return the number after 54. Alternatively, if you type in "hello",
read will return a five-character string. And if you type in the following:

(defn print-greeting [preferred-customer]
(if preferred-customer (println "Welcome back!")))

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Reading and Evaluating ¢ 9

you will get a four-element list that looks suspiciously like a Clojure function
definition but is nevertheless just some data.

Along with read, Clojure also comes equipped with read-string, a function that
parses the characters in a string into a Clojure value. Thus we could get the
same four-element list like this:

;; A complicated string with some escaped quotes.

(def s
"(defn print-greeting [preferred-customer]
(if preferred-customer (println |"Welcome back!\")))")

;7 A four-element list.
(read-string s)
Which brings us to the wonderful function, eval. If the read function’s job is to

turn characters into data structures, then it falls to eval to turn data structures
into action:

;, A three element list.
(def a-data-structure '(+ 2 2))

;; The number 4.

(eval a-data-structure)

The wonderful thing about eval is that it takes the data you pass in, which
should look like Clojure code, and compiles and runs it as Clojure code:

;; Bind some-data to a list

(def some-data
'(defn print-greeting [preferred-customer]
(if preferred-customer (println "Welcome back!"))))

;, At this point we have some-data defined,
;; but not the print-greeting function.
;; Now let's eval some-data...

(eval some-data)

;; And now print-greeting is defined!

(print-greeting true)

Essentially, eval attempts to evaluate whatever data you pass in as Clojure

code. Sometimes that evaluation is trivial. Numbers, strings, and keywords
just evaluate to themselves:

(eval 55) ; Returns the number after 54.
(eval :hello) ; Returns the keyword :hello
(eval "hello") ; And a string.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Chapter 19. Read and Eval ® 10

But you can also have eval evaluate symbols or call functions:

(def title "For Whom the Bell Tolls")

;; Get hold of the unevaluated symbol 'title..

(def the-symbol 'title)

;; ...and evaluate 1it.

(eval the-symbol)

;; While a list gets evaluated as a function call.

(eval '(count title))

The key to understanding eval is not so much what it does—it runs stuff as
code—as what it takes in: ordinary Clojure lists, vectors, keywords, and
symbols. You can, for example, construct some code on the fly—using garden-

variety Clojure functions like list and vector—and evaluate it with eval. So this
is yet another way to define and then call print-greeting:

def fn-name 'print-greeting)

def args (vector 'preferred-customer))

def the-println (list 'println "Welcome back!"))

def body (list 'if 'preferred-customer the-println))

—_~ o~~~

(eval (list 'defn fn-name args body))

(eval (list 'print-greeting true))

The Homoiconic Advantage

So there’s our answer: Clojure’s syntax is the way it is because it's amphibious,
equally at home representing code and data. Having a single text format along
with a single in-memory representation of both code and data is not just ele-
gant; it also has some serious practical advantages. For example, writing
Clojure code-analysis tools is very straightforward. Need to read a file full of
Clojure code? No problem:

(ns codetool.core
(:require [clojure.java.io :as io]))

(defn read-source [path]
(with-open [r (java.io.PushbackReader. (io/reader path))]
(Lloop [result []11]
(let [expr (read r false :eof)]
(if (= expr :eof)
result
(recur (conj result expr)))))))

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

An Eval of Your Own * 11

Call read-source with the path to a Clojure source file, and you will get back a
sequence of all of the expressions in that file, parsed into the lists and vectors
that you already know how to use.

If you look closely at read-source, you will see that at its center is a slightly more
elaborate call to read: (read rfalse :eof). The extra arguments tell read to read from
somewhere besides standard input (that’s the r), and to return the keyword
:eof when it hits the end of the file. But the truly remarkable thing about read-
source is that most of it is devoted to the mundane tasks of opening the file
and managing the results. The actual parsing of the Clojure source is all
bundled up in that call to read.

Even more remarkable is that the combination of read and eval makes writing
a REPL so easy that sooner or later every Clojure programmer gives it a go.
Here’s my shot at it:

(defn russ-repl []
(Loop [1
(println (eval (read)))
(recur)))

Just read an expression, evaluate it, print the result, and loop. Thanks
mostly to eval, the REPL is the rare acronym that is nearly a program.

REPR?
Strictly speaking the loop in russ-repl is not necessary. Remove it
and the recur will recursively call the function. It’s there because
the L in REPL demands it.

An Eval of Your Own

The wonderful thing about eval is that it's simultaneously a gateway to the
entire Clojure programming language and a very ordinary function. That eval
is just an ordinary function raises an interesting question: can we—as an
intellectual exercise—implement our own version of eval?

Remarkably, we can. We've already seen that if you hand eval a string or a
keyword or a number, you get the same string, keyword, or number back,
unchanged. So here’s a start on our own toy eval function:

(defn reval [expr]
(cond
(string? expr) expr
(keyword? expr) expr
(number? expr) expr
:else :completely-confused))

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Chapter 19. Read and Eval ¢ 12

Note that the real eval throws an exception when you hand it something it
doesn’t understand, but to keep the example simple we’ll return :completely
confused.

We can make the confusion less likely by handling symbols and vectors and
lists. These are all a bit more complex, so let’s delegate them to separate
functions:

(defn reval [expr]
(cond
(string? expr) expr
(keyword? expr) expr
(number? expr) expr
(symbol? expr) (eval-symbol expr)
(vector? expr) (eval-vector expr)
(list? expr) (eval-list expr)
:else :completely-confused))

Actually evaluating symbols isn’t too difficult: just look them up in the current
namespace:

(defn eval-symbol [expr]
(.get (ns-resolve *ns* expr)))

Vectors are also straightforward. We just need to recursively evaluate the
contents:

(defn eval-vector [expr]
(vec (map reval expr)))

Things only get interesting when we evaluate lists. First we need to evaluate
the contents of the list in exactly the same way that we did with vectors. Once
we've done that we just need to call the function, which we do with apply:
(defn eval-list [expr]
(let [evaled-items (map reval expr)
f (first evaled-items)
args (rest evaled-items)]
(apply f args)))

We could go on, perhaps adding support for maps and if expressions and ns
and so forth, but let’s pause here and take stock.

Go!

I encourage you to go on and see how much Clojure you can
6 implement. There is nothing like building your own to get a clearer

idea of how the real thing works.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

In the Wild * 13

The first thing to note about our excursion into programming-language
implementation is that we’re cheating. We're relying on all the glories that
Clojure provides to implement a slow, partial subset of Clojure. What we get
out of reval is not a practical programming language but insight—insight into
how Clojure works—all courtesy of the homoiconic power of the language.

Second, it’s important to keep in mind that since Clojure—real Clojure—is a
compiled language, the details of the real eval are rather more complicated.
Instead of saying, Oh, this is a list. Treat it as a function call, the real eval
says, Oh, this is a list. Generate some code to call the function and then run
that code.

Nevertheless, building toy versions of eval is so much fun and so illuminating
that it has been a cottage industry among programmers using LISP-based
languages for decades. Welcome to the club.

In the Wild

If you are interested in the ins and outs of implementing Clojure, you should
definitely check out the MAL project." MAL, short for Malke a Lisp, defines a
simple Clojure-like language and then proceeds to implement it in (as of this
writing) 68 languages, everything from Ada to Visual Basic.

You can find a great example of the power of using plain old Clojure values
for both code and data in metadata. Metadata is extra data that you can hang
on Clojure symbols and collections, data that in some ways enhances your
value without being an official part of the value.

There are two ways you can hang some metadata on a value. You can do it
either explicitly with the with-meta function:

(def booksl (with-meta ["Emma" "1984"]1 {:favorite-books true}))
or by using the ":keyword syntactical sugar:
(def booksl ~:favorite-books ["Emma" "1984"])

Having applied some metadata to your value, you can get it back with the
meta function:

;; Gives you the {:favorite-books true} map.

(meta booksl)

1. https://github.com/kanaka/mal

« Click HERE to purchase this book now. discuss

https://github.com/kanaka/mal
http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Chapter 19. Read and Eval ¢ 14

The key thing about metadata is that it is extra data: metadata doesn'’t affect
the actual value. That means that two otherwise equal values are still equal
even if they have different metadata:

;, Otherwise identical vectors with different metadata. .

(def books2 (with-meta ["Emma" "1984"]1 {:favorite-books true}))

(def books3 (with-meta ["Emma" "1984"]1 {:favorite-books false}))

;; Are still equal.

(= books2 books3) ; True!

If the metadata syntax looks familiar, it should. We already came across
metadata when we were dealing with dynamic vars:

(def ~:dynamic *print-length* nil)
There are also less obvious uses of metadata. For example, when you define

a function with a docstring, Clojure stashes the docstring of the function in
the metadata of the symbol.

But don’t take my word for it. Define a function with a docstring:

(defn add2
"Return the sum of two numbers"
[a b]
(+ a b))

and then look at the metadata on the add2 var:

(meta #'add2)

You will see something like this:

{:doc "Return the sum of two numbers",
rarglists ([a b]),
:name add2,
:ns #object[clojure.lang.Namespace 0xa55c011 "user"]
:line 1
:column 1

}

And there is the docstring, along with all sorts of useful information about
our function, all stashed in the metadata.

Finally—and returning to the topic at hand—in exactly the same way that a
function call is just a list and the parameters in a defn are just a vector,
metadata is just a map. So if you pick up some metadata from a value:

(def md (meta books3))

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Staying Out of Trouble ® 15

you have a plain old map:

;; Do mapish things to the metadata

(count md) ; Returns 1
(vals md) ; Returns (false)

Remember, Clojure code is just Clojure data, all the way down.

Staying Out of Trouble

Having introduced you to the eval function, let me now give you a critical bit
of advice: don'’t use it. At least not for real, at least not now—not while you
are just learning Clojure. The eval function is an incredibly useful tool to have
lying around, but it’s also something of a blunt instrument. Just how blunt?
Think about the difference between writing this into your Clojure program:

(+11)
and this:
(eval '(+ 1 1))

The first, straightforward, bit of code adds two numbers together. If it's part
of a Clojure application then it will get compiled once and it’s the compiled
version that will get fired off at runtime. The second rendition of the code will
also get compiled once, but it’s the call to eval, along with some data, that will
get compiled. At runtime that call to eval will crank up the Clojure compiler
again, this time to turn the list (+ 1 1) into something executable. And that
will happen every time you want to add 1 and 1.

There are also some subtleties involved in using eval that will eventually rise
up and bite you if you get too enthusiastic. To take just one example, since
eval doesn’t know about your local generated by let bindings, this:

(def x 1)

(let [x 10000000]
(eval '(+ x 1)))

may not give you the result you are expecting.

In real life people tend to reserve eval for development tools like the REPL and
for those rare moments when you need to programmatically generate and
execute code. Reserve eval for those moments when you have no idea what
runtime code you want to execute until some runtime data tells you. For the
other 99.99 percent of the programming problems that you are likely to face,
the ordinary tools of functional programming, together with macros—which
we’ll talk about in the next chapter—will suffice. And yes, we're now at the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Chapter 19. Read and Eval ® 16

point where we can describe the amazing bag of tricks that is functional
programming as ordinary.

Compared to eval, the read function is both less cool and more useful on an
everyday basis. The main danger lurking inside of read is that under some
circumstances it will execute arbitrary code as specified by the data you're
reading. For example, try evaluating this:

(def s "#=(println \"All your bases...\")")

(read-string s)

The bottom line is that you only want to use read to read data that you trust.
If you want to read some Clojure-style data from an untrusted source, use
the read function from the clojure.edn namespace (the official name for the Clo-
jure-style data format is EDN):

(require '[clojure.edn :as edn])
;; Read some data that I don't necessarily trust.

(def untrusted (edn/read))

And one final word on Clojure’s syntax: as we've seen in this chapter, there
is a method to the madness of Clojure’s syntax. Yes, putting the function
name on the inside—(rest some-seq—looks a little strange. But at the cost of
adapting to a slightly odd syntax, we get the ability to read and manipulate
Clojure code as data and we get the seamless integrations of read and eval.
And, as we’ll see in the next chapter, we get macros.

If the Clojure syntax still bugs you, keep in mind programming-language syntax
is largely a matter of taste. Nobody is born understanding what this means:

if (x == 0) {
System.out.println("The number is zero");

}
Nor this:

if x ==
puts "The number is zero"
end

And certainly not this:

<?xml version="1.0" encoding="utf-8"7?>
<books>
<book>
<name>Pride and Prejudice</name>
<author>Austen</author>
</book>

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

Wrapping Up ¢ 17

<book>
<name>Death Comes to Pemberley</name>
<author>James</author>

</book>

<book>
<name>Pride and Prejudice and Zombies</name>
<author>Grahame-Smith</author>

</book>

</books>

And yet we adapted. If Clojure’s syntax is still giving you headaches, stick
with it. It is an integral part of what makes the language go.

Wrapping Up

In this chapter we explored the ideas behind Clojure’s somewhat odd but it
grows on you after a while syntax. We saw how Clojure syntax is a bit odd
because it's a compromise between being a good programming-language syntax
and a good syntax for data. But that compromise pays off in a big way: by using
the same syntax and data structures for code and data, we can roll the entire
Clojure programming language into two simple functions: read and eval.

Now that you understand the ideas behind Clojure’s syntax, it’s time to turn
to the final topic of this book: macros.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/roclojure
http://forums.pragprog.com/forums/roclojure

