
Extracted from:

Effective Haskell
Solving Real-World Problems

with Strongly Typed Functional Programming

This PDF file contains pages extracted from Effective Haskell, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Haskell
Solving Real-World Problems

with Strongly Typed Functional Programming

Rebecca Skinner

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-934-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
Software development is harder than it’s ever been, and the unfortunate
reality is that every year things continue to get harder. Much of this difficulty
is due to the complexity inherent in modern systems. Today, software needs
to do more things, it needs to do them at a larger scale, and the consequences
for failure are higher. To be effective in the market today, we have to use every
tool at our disposal to rein in the complexity of our systems. I believe that
Haskell is one of the greatest tools that we have at our disposal today to help
us craft systems that are both more reliable and less complex.

Haskell isn’t a new language. In fact, the first version of Haskell was published
in 1990, a year before Python and five years before Java. In many ways Haskell
has always been a remarkably successful language. It’s been used widely in
both industry and academia for the research and development of programming
languages, and the design of Haskell has been incredibly influential in shaping
other languages that are in wide use today.

Although it’s been wildly successful as a research tool and programming
language “influencer,” industrial adoption of Haskell has lagged behind. Today,
there are more Haskell jobs than ever, and more companies are choosing
Haskell to build their products and key parts of their infrastructure. Right
now, Haskell remains more of a secret weapon than a mainstream tool, but
the clear benefits of Haskell for the kinds of systems that people are building
today means that an inflection point in the popularity of the language is
inevitable. If Haskell doesn’t become the next big thing, then the next big
thing will certainly end up looking even more like Haskell than any of the
other myriad of languages that have been influenced by it.

Why Choose Haskell?
The reason that Haskell is such a good choice for modern software is that it
gives us everything we need to build reliable, predictable, and maintainable
systems that run efficiently and can be easily scaled horizontally. This is

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

thanks to Haskell’s design as a lazy pure functional language with an excep-
tionally powerful and expressive static type system.

When you think of functional programming, the first thing that likely comes to
mind are the sorts of functional programming features that are recently being
added to mainstream object-oriented languages. These include things like:

• Support for closures or lambda functions
• Using functions like map and reduce instead of traditional loops
• Immutable data structures that copy their results rather than mutating

their inputs

Haskell is different. The benefits we get from Haskell go far beyond being able
to pass around functions and have immutable data structures. Thanks to its
purity, Haskell can offer us strict guarantees about immutability across our
entire program. This means that we never have to worry about unintended
changes to shared or global state causing our program to crash, or think
about how to coordinate access to mutable data.

One of the reasons that Haskell can give us strong guarantees about what our
program does where other languages can’t is thanks to the power of its type
system. Haskell’s type system is more expressive than the type system of any
other mainstream programming language in use these days. Thanks to the type
system, a Haskell program can keep track of information about what kind of
data a variable holds, where it came from, what can be done with it, and even
whether the function that calculates that value could possibly fail.

Of course, this type information doesn’t just help us write better programs
once. Every time we make changes to our program, the type checker does its
job to ensure that we haven’t introduced any new problems, and helps us
track down things that might need to change. As applications grow and teams
get larger, the power of the type system to help us refactor becomes even more
important. Types become a way that we can communicate with our peers, to
provide guard rails for how they use our code, and to make sure we are using
the code they wrote as it was intended. In this way, Haskell doesn’t just solve
for the problems of complexity with the software we’re writing, it also helps
with the complexity inherent in building that software with a large team.

Why This Book
Haskell can offer enormous benefits to individuals and developers who want
to write high quality software, but as the saying goes, “if it were easy, everyone
would do it.” The benefits of Haskell come at the cost of a steep learning curve.
Haskell is hard to learn, but this book will help.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

Learning Haskell can be hard in part because it’s so different from other
languages you’ve probably used. This ends up being a particularly hard
problem because many of the most unusual concepts that you need to learn
often show up all at the same time, leading to circular dependencies in your
learning plan. This book has been carefully designed, especially in the first
half, to provide an on-ramp to the language that avoids the need to get into
circular knowledge references.

Rather than teach you how to translate your programs from other languages, in
this book you’ll develop an intuition for how to think about programs in Haskell
from the ground up. This will make it easier for you to read other developers’
code, make you more effective at writing code, and help you with troubleshooting.

Most of the chapters in this book build on concepts from previous chapters,
and no content in any chapter relies on concepts that have not yet been
introduced. You’ll never be forced to use something that hasn’t yet been fully
explained. In the last half of this book, once you have worked through the
fundamental materials, you may be able to approach some material out of
order if there are particular areas that you are interested in.

Some features of Haskell can seem unnecessarily complex the first time you
encounter them. Some people, when they are faced with a feature that makes
no sense, will assume the feature was a bad idea and give up on learning it
altogether. Other people will put the concept on a pedestal and assign it dispro-
portionate significance. In either case, the lack of motivation for the things
Haskell does differently can be a barrier to learning. To help with that, each
time a new concept is introduced in this book, we’ll dedicate a significant amount
of time to establishing a motivation for that concept to help you better internalize
the reason for the design decisions Haskell makes. Understanding the motivation
will ensure you’re better positioned to make informed choices about how to
design your applications, and when and how to use features of the language.

Since you’ll be learning to think about programming in an entirely new way,
we’ll approach the material quite slowly in the beginning, carefully outlining
all of the intermediate steps that go into executing some code and walking
through multiple examples. As you approach the middle of the book, the pace
will pick up, and by the last few chapters you should be learning new concepts
at the pace of a native Haskell developer.

What to Expect as You Read
This book focuses on teaching through the demos and hands-on example code.
Most of the chapters in this book will start with a motivating example followed

• Click HERE to purchase this book now. discuss

Why This Book • vii

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

by several interactive demonstrations of a concept that you can reproduce
using the interactive Haskell development environment ghci. Most chapters
will also include some projects you can build as you are working through
material. The chapters will include all of the code you need to build a func-
tioning minimal example, but you are encouraged to make modifications and
experiment with the code as you are working through the book. At the end
of each chapter you’ll also have some exercises that build on the examples
you wrote. These examples will help you learn how to navigate Haskell’s
documentation and work within its ecosystem to self teach, so you are better
equipped to continue learning after you’ve finished the book.

Compared to other programming language communities, parts of the Haskell
community can tend to be a little “math jargon” heavy. It’s not uncommon to
see terms from theoretical computer science and math make their way into
blog posts, articles, and even library documentation. This book aims to teach
Haskell without requiring either a strong background in mathematics or
familiarity with mathematical jargon. Since knowing the jargon and getting
comfortable using it will ultimately help make you a more effective Haskell
developer, common jargon terms will be introduced, defined, and then used
consistently throughout the book. If you are skipping ahead and see some
intimidating sounding language, turn back a few pages and you’re likely to
find a definition and several examples to help you make sense of the words
before they start being used regularly.

How to Read This Book
This book has been designed to be read cover-to-cover as a tutorial and
workbook, or to be used in a classroom or reading group setting. Starting
with Chapter 1, each new chapter will continue a theme or build on some
knowledge that you picked up in the previous chapter. If you have some prior
experience with Haskell, it’s worthwhile to start reading from the beginning
so that you can follow along with the subsequent references to earlier material.

For more experienced Haskell developers, this book can also serve as a useful
resource to help you learn some practical ways to apply more advanced
techniques. If you’ve used Haskell in school or written a few small programs
and are looking to move into building larger production applications, you may
find it helpful to skim the first half of this book and then start reading the
second half more thoroughly.

As you are working through the book, you’ll encounter several different kinds
of example code. You should always be able to tell what type of environment
you should be working in based on the formatting of the examples:

Introduction • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

• Code that starts with a λ character should be typed into ghci.
• Lines that start with user@host$ should be typed into a shell like bash or zsh.
• Other code can be written in Haskell files using your text editor, or written

directly into ghci at your discretion.

Until you have finished Chapter 5, create a new directory for each chapter. Inside
of the directory you create for each chapter, create a file named after the current
chapter, for example, Chapter1.hs. You can use this for keeping track of example
code and experiments you want to run. You’ll also create several files named Main.hs
as you are working through the examples. You can put each of these in a subdi-
rectory, for example, one subdirectory per chapter, or you can rename your old
Main.hs files when you are no longer actively working through them. Whatever
organizational scheme you prefer, ensure you keep around all your examples and
experiments since you’ll want to refer to them frequently as you are learning.

Once you’ve worked through the chapter on Cabal on page ? you’ll be better
equipped to create fully stand-alone projects that you can build. You’ll also
learn how to re-use code that you’ve written. From that point onward, you
can create a new project for each chapter or each major example.

Following Along with Example Code
As you read this book, you’ll work through examples iteratively, making
changes to earlier code and adding new features. Once you’ve learned about
how to import code from other modules, we’ll begin introducing new features
iteratively that require adding additional imports. Similarly, once you’ve
learned how to work with language extensions, we’ll add them as we work
through examples. The rest of this section will discuss how we’ll approach
introducing new imports and extensions in example code. Don’t worry too
much about the syntax yet. As you work through the book, you’ll learn about
imports and language extensions before they are required for any examples.
For now, skim this section and feel free to come back to it later if you need to.

Most of the chapters in this book will focus on building up a few small
example programs. In some cases, we’ll explicitly define a new module when
we’re starting a new example. In this case, these new modules may start out
including a few language extensions or imports.

{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DerivingStrategies #-}
module Main Where

import Data.Text (Text)

main :: IO ()
main = print helloWorld

• Click HERE to purchase this book now. discuss

How to Read This Book • ix

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

As we iterate through the example, we’ll add new features that might require
additional language extensions or add-ons. When we’re getting ready to use
a new module or extension, we’ll add them to the top of an example:

{-# LANGUAGE OverloadedStrings #-}
import Data.ByteString (ByteString)

helloWorld :: ByteString
helloWorld = "Hello, World"

In your own code, you should add these to the relevant parts of your module.
Here’s an example of what your own code should look like as you follow along
with the examples:

{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE OverloadedStrings #-}
module Main Where

import Data.ByteString (ByteString)
import Data.Text (Text)

helloWorld :: ByteString
helloWorld = "Hello, World"

main :: IO ()
main = print helloWorld

Not all of the examples that you work through will start with a module and
a set of imports or extensions. In these cases, you can start with your own
empty module, or you can work though the examples in ghci.

Compiler Versions, Language Standards, and Extensions
Although there have been several different implementations of Haskell over
the years, the Glasgow Haskell Compiler (GHC) is the de facto standard Haskell
compiler. In this book we’ll focus on Haskell as implemented by GHC 9.4,
which is the newest stable release at the time of this writing. All of the
examples have also been tested with GHC 8.10.

Compiler Version Differences

A few examples in this book will use newer features of GHC not
available in version 8.10. Look out for an aside, like this one, to
learn about newer features and how to write code without those
features when you need to support older compilers.

As Haskell evolves, new features are typically added through extensions.
Language extensions allow you to enable and disable specific language fea-
tures. The Haskell2010 language standard is the default language version

Introduction • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

that’s used by GHC 8.10, and it includes a number of extensions that are
enabled by default. In GHC 9.4, the GHC2021 language version is used by
default. GHC2021 isn’t an officially published Haskell standard; instead it
represents a number of commonly accepted GHC specific nonstandard
extensions to Haskell2010 that are enabled by default.

In this book, we’ll target Haskell2010. Any language extensions that aren’t
included in Haskell2010 will be introduced and discussed. Complete example
programs will always include all extensions that would be required when
using Haskell2010. Shorter examples may omit language extensions for the
sake of readability.

GHC2021 Extensions

We’ll target Haskell2010 as a baseline when choosing which lan-
guage extensions to highlight in this book. If you’re using
GHC2021, look for an aside like this to tell you when an extension
is included by default and doesn’t need to be enabled explicitly.

EnabledExtension

ManuallyAllowAmbiguousTypes

GHC2021BangPatterns

GHC2021ConstraintKinds

ManuallyDataKinds

ManuallyDefaultSignatures

ManuallyDeriveAnyClass

ManuallyDerivingStrategies

ManuallyDerivingVia

GHC2021ExistentialQuantification

GHC2021ExplicitForAll

GHC2021FlexibleContexts

GHC2021FlexibleInstances

ManuallyFunctionalDependencies

ManuallyGADTs

GHC2021GeneralizedNewtypeDeriving

GHC2021KindSignatures

GHC2021MultiParamTypeClasses

ManuallyOverloadedStrings

GHC2021PolyKinds

• Click HERE to purchase this book now. discuss

How to Read This Book • xi

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

EnabledExtension

ManuallyQuantifiedConstraints

GHC2021RankNTypes

ManuallyRecordWildCards

GHC2021ScopedTypeVariables

GHC2021TupleSections

GHC2021TypeApplications

ManuallyTypeFamilies

GHC2021TypeOperators

ManuallyUndecidableInstances

ManuallyNoStarIsType

GHC2021PolyKinds

GHC2021StandaloneDeriving

Libraries and Library Versions
The examples in this book stick to the standard library, base, as much as
possible. For features that aren’t available in base, we’ll stick to a small
selection of popular libraries. This should ensure maximum compatibility, at
the cost of not showing off some very interesting libraries that are worth
learning. The following table includes the exact versions of each package that
were used for the examples. In any cases where there are incompatible changes
between library versions, we’ll use the most recent version of the library.

Version (GHC 8.10)Version (GHC 9.4)Package

4.14.3.04.17.0.0base

0.10.12.00.11.3.1bytestring

1.2.1.01.2.1.0base64-bytestring

1.2.4.12.0.1text

0.6.5.10.6.6containers

0.12.3.10.12.3.1vector

1.9.31.12.2time

2.7.2.22.7.3unix

2.2.22.2.2mtl

0.5.6.20.5.6.2transformers

1.6.13.21.6.15.0process

Introduction • xii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

