Extracted from:

Effective Haskell

Solving Real-World Problems
with Strongly Typed Functional Programming

This PDF file contains pages extracted from Effective Haskell, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

tic

The

:
©

O
~
1))
T
-
> D,
a.w
E
E
-
1)

=
=
=
)]
=
-
Q
S
=
Ay
=
—
O
s
v}
Q
ad
ap
5
2
Q
0p!

2

- O O - _O

-

B3 o 8™ ° - - B
/ 111111111

ek~

al Programming
Rebecca Skinner
Edited by Michael Swaine

R

00000

e e
OO0 O OO0 ™Mo =

0000000

Strongly Typed Func1t171






Effective Haskell

Solving Real-World Problems
with Strongly Typed Functional Programming

Rebecca Skinner

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: Karen Galle

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-934-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2023


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Understanding Space Leaks

Space leaks are a type of error we can run into in Haskell when laziness starts
to work against us, and we start to see a large number of thunks accumulated
that are not evaluated. This can manifest in several different ways, including
causing our programs to use too much memory, to have poor or unpredictable
performance patterns, or more rarely, to crash at runtime with a stack over-
flow. What we've seen so far when trying to run our directory traversal program
is an example of how space leaks can make themselves known when the
performance isn’t what we expect. Specifically, we would expect generating
the character histogram to take a lot of time, but in fact it takes almost no
time at all.

The idea that a space leak can show up as a problem with unexpected perfor-
mance characteristics can be counterintuitive, but as we look into what
happened with our program in this case it will start to be clear just why the
unusual performance was an indicator of a space leak.

Before we dive into the code and start working on a fix, let’s get some hard
data. When we suspect that we have a space leak, it can be helpful to look
at information about the amount of memory we're allocating, and what the
garbage collector is doing. Even if the data doesn’t initially tell us where to
look for the error, it gives us a baseline to measure against, so we can see if
the changes we're making are actually having a positive impact on the runtime
characteristics of the application.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

°6

We can’t get the kind of information that we need from ghci, so let’s create a
new file and make sure that we have main defined so that we can compile the
application as a stand-alone program:

import System.Environment (getArgs)

main :: IO ()
main = getArgs >>= directorySummaryWithMetrics . head

If you haven't already created a new cabal project for this program, you can
take a minute to do so now, or you can compile the program directly with ghc.
In either case, make sure that you've enabled -02 level optimizations. GHC is
able to do a number of optimizations, and we want to avoid spending too
much time chasing down optimizations that the compile will take care of for
us anyway.

$ ghc -02 DirectorySummary.hs -o DirectorySummary

Once you've built the program, we want to run it, but instead of running the
program like normal, we're going to pass in some extra flags to the Haskell
runtime so that we can ask it to collect some information about memory usage
as our program is running. Flags like this that we use to control the way the
Haskell runtime works, or to ask it for some extra information about our
program, are called RTS flags. RTS flags are normal command line flags, but
we need to differentiate between options we want to pass to the Haskell run-
time and the options that we want to pass to our program. To do so, we start
by passing in the special +RTS argument. This argument will cause the runtime
to interpret all the arguments that it sees as arguments to the runtime system,
until it sees the -RTS argument. This lets us pass in as many arguments as
we want to the runtime system without our application having to know about
or handle them.

In our particular case, we only want to pass a single RTS flag, -s. This flag
will ask the runtime to generate summary statistics about the memory utiliza-
tion of our application:

$ ./DirectorySummary +RTS -s -RTS ./example-dir/

When you run the program with this RTS flag you’ll get all of the normal
output you'd expect, and then at the end before your program exits you’'ll see
some output like this:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

1,911,494,744 bytes allocated in the heap
44,005,608 bytes copied during GC
12,816,336 bytes maximum residency (10 sample(s))
6,051,224 bytes maximum slop
39 MiB total memory in use (3 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 1764 colls, 0O par 0.026s 0.026s 0.0000s 0.0004s
Gen 1 10 colls, 0O par 0.007s 0.007s 0.0007s 0.0012s

INIT time 0.000s
MUT time 0.363s
GC time 0.033s
EXIT time 0.000s
Total time 0.396s

0.000s elapsed)
0.363s elapsed)
0.033s elapsed)
0.000s elapsed)
0.396s elapsed)

—_~ e~ e~~~

%GC time 0.0% (0.0% elapsed)
Alloc rate 5,262,713,737 bytes per MUT second

Productivity 91.7% of total user, 91.6% of total elapsed

There’s a lot of information here that we won’t cover in this book, but you
can refer to the GHC User Guide' for comprehensive documentation on the
meaning of all these fields. For the moment we're going to focus on the maxi-
mum residency field, which tells us the amount of memory that our program
was actually using at its peak.

If you look at the total size, in bytes, of all of the data in your example direc-
tory, you’ll notice that it is fairly similar to the total residency of our applica-
tion. For example, if we look at the total number of bytes in all of the files in
example-dir, we’ll see that they total about 12.3 megabytes, which is a little bit
less than the total residency of our application, but suspiciously close:

$ du -s -B 1 ./example-dir/
12365824 ./example-dir/

The fact that our maximum residency is so similar to the size of all of the files
in our directory can start to give us a hint about what has happened. When
we read the contents of a file in so that we can calculate the character his-
togram, we're not freeing that data right away. Instead, we're keeping all of
the files in memory. The fact that we see observable delay before the histogram
is printed out on the screen gives us a bit more information: we're reading all
of the files, but not actually calculating the histogram until we're ready to
print it out. It seems like, in this case, laziness might be causing trouble.
Let’s take a look at what’s going on, and in the next section, we’ll look at a
few ways to address this particular type of problem.

1. https://downloads.haskell.org/ghc/latest/docs/html/users _guide/index.html

« Click HERE to purchase this book now. discuss


https://downloads.haskell.org/ghc/latest/docs/html/users_guide/index.html
http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

°8

Laziness, Strictness, and 10

The root cause of the problem we've run into is that we're mixing lazy and
strict values, and it’s causing our program to act unexpectedly. Let’s take a
look at our histogram calculation code again for reference:

traverseDirectory metrics root $ \file -> do
contents <- timeFunction metrics "TextIO.readFile" $
TextIO.readFile file

-- Omitting some things here

timeFunction metrics "histogram" $ do
oldHistogram <- readIORef histogramRef
let
addCharToHistogram histogram letter =
Map.insertWith (+) letter 1 histogram
newHistogram = Text.foldl' addCharToHistogram oldHistogram contents
writeIORef histogramRef newHistogram

The first thing that we need to keep in mind here is that TextlO.readFile is a strict
function. Whenever we call it, we're going to get the entire contents of the file
brought into memory. Similarly, combining 10 actions using (>>=) or in a do
block is always strict. As we're traversing the directories, we're always going
to read the contents of the file before we write an update to histogramRef or
before we move on and read the contents of the next file.

The second thing that we have to keep in mind is that Haskell is lazy by
default, so all of the things that don’t have to be strict are going to generate
thunks instead of strictly evaluated values. That means that whenever we
create a new histogram, we’re not really computing the value of a brand new
histogram, we’re just creating a new thunk that can compute a histogram
when a histogram is needed:

newHistogram = Text.foldl' addCharToHistogram oldHistogram contents

Perhaps unintuitively, a value to an IORef is not strict. When we call writelORef,
we’re not forcing the value newHistogram to be computed, instead we just write
the thunk into the reference.

The last thing to keep in mind is a thunk keeps around references to every-
thing that is needed to compute a value. In this case, each thunk we’re writing
into the reference is keeping a reference to the previous thunk that was stored
in the IORef and a reference to the contents of the text file we've just read.
Since we have a reference to the contents of the text file, that data can’t be
garbage collected. Since we have a reference to the previous thunk, which in
turn has a reference to the contents of its text file, that text file can’t be

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

°9

garbage collected either. By the time we've finished traversing the directory,
we have a chain of thunks that are keeping open references to all the data
from all the files we’ve opened—plus a bit of overhead for the other calculations
we need to do.

The solution to this problem is to reduce the amount of laziness in our pro-
gram. If we can compute the value of the histogram thunk immediately, then
we will no longer need to keep references to the contents of the file or the
previous thunk, and the garbage collector can clean everything up for us.
This is a common enough problem in Haskell programs that we have not just
one, but several different approaches we can use to solve the problem. Before
we dive into reviewing the options though, let’s take a slight detour to
understand exactly what we mean when we're talking about strictness, lazi-
ness, and what it means to evaluate an expression. This will give us the tools
to better understand when and how to introduce strictness, and also make
sure we're better prepared to avoid this type of space leak in the future.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

