
Extracted from:

Effective Haskell
Solving Real-World Problems

with Strongly Typed Functional Programming

This PDF file contains pages extracted from Effective Haskell, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Haskell
Solving Real-World Problems

with Strongly Typed Functional Programming

Rebecca Skinner

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-934-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Specifying Type Class Instances with Type Applications
A common problem when you’re using type class constraints is ambiguity
about which specific type class instance should be used. Consider, for
example, a program you want to have print out the additive and multiplicative
identities of some Natural numbers. You might write something like this:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

showIdentities =
let mul = multiplicativeIdentity

add = additiveIdentity
msg = "The additive identity is: "

<> show add
<> " and the multiplicative identity is: "
<> show mul

in print msg

Unfortunately, this fails to compile! The problem is that multiplicativeIdentity and
additiveIdentity both return a type that depends on the type class instance that
we’re using, but the compiler doesn’t have a way to pick any particular
instance, and so it has to give up and raise an error. One way we could get
around this for our example function is to add a type annotation:

showIdentities =
let mul = multiplicativeIdentity :: Peano

add = additiveIdentity :: Peano
msg = "The additive identity is: "

<> show add
<> " and the multiplicative identity is: "
<> show mul

in print msg

This gets us past our error, but it’s not an ideal solution. The first problem
is that we’re assuming that the return type of the function is sufficient to tell
the compiler which type class to use. It works out for our small example here,
but if the return type of the function had been polymorphic, we’d be back in
the same situation. The second problem is that type annotations can be a
little syntactically awkward in some places, especially in pointfree code. It
would be ideal in cases like this if we could directly tell the compiler which
type class to use, just like we did when we passed in a value of our original
Natural record type.

TypeApplications

The TypeApplications extension has been available since GHC 8.0.1.
This extension is enabled by default in GHC2021 but you’ll need to
enable it manually if you are using Haskell2010. This is a safe
extension, and shouldn’t introduce any problems with existing
code.

The TypeApplications language extension allows us to do exactly that. Type
applications gives you the ability to pass type names as arguments to poly-
morphic functions, to select the type class instance that’s used. To see it in
action, let’s start up a ghci session. TypeApplications is enabled with GHC2021, but

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

if you’re using a version of GHC older than 9.0, you’ll need to enable the
extension manually:

λ :set -XTypeApplications

With the language extension enabled we can use @TypeName to pass a type
name into a polymorphic function. A good way to see this quickly is by using
read. The read function has type read :: Read a => String -> a, and so by controlling
the Read instance it uses to parse the string, we can control the return type.
Let’s run through a few examples:

λ read @Integer "1"
1
λ read @Float "1"
1.0

You can see in these examples how the output of the function call depends
only on the type parameter. You can partially apply type applications as well,
just like regular arguments:

λ readInt = read @Int
λ readFloat = read @Float
λ :type readInt
readInt :: String -> Int
λ :type readFloat
readFloat :: String -> Float
λ

You can use multiple type applications in functions that have more than one
variable with a type class constraint. For example, let’s write a function that takes
a string and returns an Either value that depends on the length of the input:

showLeftRight :: (Read a, Read b) => String -> Either a b
showLeftRight s

| length s > 5 = Left (read s)
| otherwise = Right (read s)

Just like before, we’ll need to use type applications to tell the compiler which
instance of the Read type class to use, but now we have two type variables to
work with, a and b. We’ll use two type applications; the first will select the
type to use for a, and the second will select the type to use for b:

λ showLeftRight @Float @Int "3.1415"
Left 3.1415
λ showLeftRight @Float @Int "321"
Right 321

You’ll notice that since we’re using an Either here, only one of the two type
applications will ever be relevant. If we’re returning a Left value, we don’t care

• Click HERE to purchase this book now. discuss

Specifying Type Class Instances with Type Applications • 7

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

about the second type variable’s instance, since we’ll never use it. In that
case, you can just provide one type application:

λ showLeftRight @Float "3.1415"
Left 3.1415

If you only want to provide the second type, you can use @_ as a placeholder.
This allows us to skip type applications when they aren’t relevant, so for
example, if you know that you’ll only be using the Right constructor you can
say:

λ showLeftRight @_ @Int "123"
Right 123

Type applications themselves can also be polymorphic. Using polymorphic
type applications allows you to create some types of abstractions that would
otherwise be difficult to express. Understanding how these work will be easier
when working in a source file, since we’ll be wanting to write type annotations
for functions, so create a new file. In addition to TypeApplications, we’ll need to
enable another extension, ScopedTypeVariables. We’ll look at the new features
that this extension enables as we’re working through the examples.

ScopedTypeVariables

The ScopedTypeVariables extension has been available since GHC
6.8.1. It’s enabled by default in GHC2021 but you’ll need to enable
it manually if you are using Haskell2010. This extension changes the
way type checking works, and may cause some existing programs
to stop compiling. It may be beneficial to consider trying to enable
this extension project wide in Haskell2010 codebases to identify any
problems before upgrading to GHC2021. This extension implies
ExplicitForAll. If you are using ScopedTypeVariables you don’t need to
manually enable ExplicitForAll.

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}

Next, let’s write a function that will guarantee that the Read and Show instances
behave as we expect. One of the generally implied contracts about the
behavior of these two type classes is that when we show a value, and then read
it, we should get the original value back. We can start testing this by writing
a function like adheresToReadShowContract:

adheresToReadShowContract val =
let a = show . read . show $ val

b = show val
in a == b

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

Unfortunately, a construct like show . read . show is too much for GHC to be able
to handle with type inference, and we’ll get a couple of errors where the
compiler tells us that it can’t figure out what type it should use to instantiate
the type class instances. If you haven’t already, try to compile your code so
that you can see the error yourself.

We could solve this problem by using explicit type application to provide some
type like Int or Bool or whatever to read, but that is overly restrictive. One of the
benefits of our function is that right now it should allow us to test any type
that has a Read and a Show instance. We don’t want to give that up!

If our program compiled, we would expect the type signature for it to be
something like:

adheresToReadShowContract :: (Read a, Show a) => a -> Bool

We’d like to be able to tell GHC that, whatever type it uses to instantiate a,
that should also be the instance that it uses for the calls to read and show. To
do that we’ll need to use some syntax that is available thanks to the Scoped-
TypeVariables extension that we’ve added. Let’s take a look at the code first and
then break down what’s happening:

adheresToReadShowContract :: forall a. (Read a, Show a) => a -> Bool
adheresToReadShowContract val =

let a = show . read @a . show $ val
b = show val

in a == b

The first thing you’ll notice is that we’ve added a new element to our type
signature, forall a.. The use of forall here is introducing explicit universal quan-
tification. This isn’t a term you’ll often need to use, except perhaps when
reading some specific GHC documentation. More generally, it’s simply referred
to as explicit forall. In the code that you’ve written so far, the forall has been
implied when you’ve used type variables. Writing it explicitly will not generally
change the way your program works, but with the ScopedTypeVariables language
extension, using an explicit forall brings the type variables into scope in the
body of the function. That means that we can refer to the type variable when
we’re using explicit type applications.

Since our use of ScopedTypeVariables has allowed us to bring our type variable
a into scope, we can apply it to read, which gives GHC enough information to
successfully compile the program.

• Click HERE to purchase this book now. discuss

Specifying Type Class Instances with Type Applications • 9

http://pragprog.com/titles/rshaskell
http://forums.pragprog.com/forums/rshaskell

