
Extracted from:

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

This PDF file contains pages extracted from Effective Testing with RSpec 3, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

Myron Marston
Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-198-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Origins: Pure, Partial, and Verifying Doubles
Now that we’ve seen the different usage modes of test doubles, let’s look at
where they come from.

Pure Doubles
All of the test doubles you’ve written so far in this chapter are pure doubles:
they’re purpose-built by rspec-mocks and consist entirely of behavior you
add to them. You can pass them into your project code just as if they were
the real thing.

Pure doubles are flexible and easy to get started with. They’re best for testing code
where you can pass in dependencies. Unfortunately, real-world projects are not
always so tester-friendly, and you’ll need to turn to more powerful techniques.

Partial Doubles
Sometimes, the code you’re testing doesn’t give you an easy way to inject
dependencies. A hard-coded class name may be lurking three layers deep in
that API method you’re calling. For instance, a lot of Ruby projects call Time.now
without providing a way to override this behavior during testing.

To test these kinds of codebases, you can use a partial double. These add
mocking and stubbing behavior to existing Ruby objects. That means any
object in your system can be a partial double. All you have to do is expect or
allow a specific message, just like you’d do for a pure double:

>> random = Random.new
=> #<Random:0x007ff2389554e8>
>> allow(random).to receive(:rand).and_return(0.1234)
=> #<RSpec::Mocks::MessageExpectation #<Random:0x007ff2389554e8>.rand(any ↩
arguments)>
>> random.rand
=> 0.1234

In this snippet, you’ve created an instance of Ruby’s random number gener-
ator, and then replaced its rand method with one that returns a canned value.
All its other methods will behave normally.

You can also use a partial double as a spy, using the expect(...).to have_received
form you saw earlier:

>> allow(Dir).to receive(:mktmpdir).and_yield('/path/to/tmp')
=> #<RSpec::Mocks::MessageExpectation #<Dir (class)>.mktmpdir(any arguments)>
>> Dir.mktmpdir { |dir| puts "Dir is: #{dir}" }
Dir is: /path/to/tmp
=> nil

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

>> expect(Dir).to have_received(:mktmpdir)
=> nil

When you used a pure double as a spy, you had a choice of how to specify
up front which messages the spy should allow. You could permit any message
(using spy or as_null_object), or explicitly allow just the messages you want. With
partial doubles, you can only do the latter. RSpec doesn’t support the notion
of a “partial spy,” because it can’t spy on all of a real object’s methods in a
performant way.

When you use partial doubles inside your specs, RSpec will revert all your
changes at the end of each example. The Ruby object will go back to its orig-
inal behavior. That way, you won’t have to worry about the test double
behavior leaking into other specs.

Since you are experimenting in stand-alone mode, you will need to call
RSpec::Mocks.teardown explicitly to get this same cleanup to happen:

>> RSpec::Mocks.teardown
=> #<RSpec::Mocks::RootSpace:0x007ff2389bccb0>
>> random.rand
=> 0.9385928886462153

This call also exits from the stand-alone mode you’ve been experimenting in.
If you want to keep exploring in the same IRB session, you’ll need to call
RSpec::Mocks.setup to go back into stand-alone mode.

Test Doubles Have Short Lifetimes

RSpec tears down all your test doubles at the end of each example.
That means they won’t play well with RSpec features that live
outside the typical per-example scope, such as before(:context) hooks.
You can work around some of these limitations with a method
named with_temporary_scope.1

Partial doubles are useful, but we consider them a code smell, a superficial
sign that might lead you to a deeper design issue.2 In Using Partial Doubles
Effectively, on page ?, we’ll explain some of these underlying issues and how
to address them.

Verifying Doubles
The upside of test doubles is that they can stand in for a dependency you
don’t want to drag into your test. The downside is that the double and the

1. https://relishapp.com/rspec/rspec-mocks/v/3-6/docs/basics/scope
2. https://martinfowler.com/bliki/CodeSmell.html

• 6

• Click HERE to purchase this book now. discuss

https://relishapp.com/rspec/rspec-mocks/v/3-6/docs/basics/scope
https://martinfowler.com/bliki/CodeSmell.html
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

dependency can drift out of sync with each other.3 Verifying doubles can
protect you from this kind of drift.

In Test Doubles: Mocks, Stubs, and Others, on page ?, you created a test
double to help you test a high-level API when your lower-level Ledger class
didn’t exist yet. We later explained that you were using a verifying double for
that spec; let’s take a closer look at why it was important to do so.

Here’s a simplified version of a similar double, without verification:

13-understanding-test-doubles/02/expense_tracker/spec/unit/ledger_double_spec.rb
ledger = double('ExpenseTracker::Ledger')
allow(ledger).to receive(:record)

When you tested your system’s public API, your routing code called Ledger#record:

13-understanding-test-doubles/02/expense_tracker/app/api.rb
post '/expenses' do

expense = JSON.parse(request.body.read)
result = @ledger.record(expense)➤

JSON.generate('expense_id' => result.expense_id)
end

The Ledger class didn’t exist yet; the test double provided enough of an imple-
mentation for your routing specs to pass. Later, you built the real thing.

Consider what would happen if at some point you renamed the Ledger#record
method to Ledger#record_expense but forgot to update the routing code. Your specs
would still pass, since they’re still providing a fake record method. But your code
would fail in real-world use, because it’s trying to call a method that no longer
exists. These kinds of false positives can kill confidence in your unit specs.

You avoided this trap in the expense tracker project by using a verifying
double. To do so, you called instance_double in place of double, passing the name
of the Ledger class. Here’s a stripped-down version of the code:

13-understanding-test-doubles/02/expense_tracker/spec/unit/ledger_double_spec.rb
ledger = instance_double('ExpenseTracker::Ledger')
allow(ledger).to receive(:record)

With this double in place, RSpec checks that the real Ledger class (if it’s loaded)
actually responds to the record message with the same signature. If you rename
this method to record_expense, or add or remove arguments, your specs will cor-
rectly fail until you update your use of the method and your test double setup.

3. https://www.thoughtworks.com/insights/blog/mockists-are-dead-long-live-classicists

• Click HERE to purchase this book now. discuss

Origins: Pure, Partial, and Verifying Doubles • 7

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/02/expense_tracker/spec/unit/ledger_double_spec.rb
http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/02/expense_tracker/app/api.rb
http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/02/expense_tracker/spec/unit/ledger_double_spec.rb
https://www.thoughtworks.com/insights/blog/mockists-are-dead-long-live-classicists
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

Use Verifying Doubles to Catch Problems Earlier

Although your unit specs would have had a false positive here,
your acceptance specs would still have caught this regression.
That’s because they use the real versions of the objects, rather
than counting on test doubles.

By using verifying doubles in your unit specs, you get the best of
both worlds. You’ll catch errors earlier and at less cost, while
writing specs that behave correctly when APIs change.

RSpec gives you a few different ways to create verifying doubles, based on
what it will use as an interface template for the double:

instance_double('SomeClass')
Constrains the double’s interface using the instance methods of SomeClass

class_double('SomeClass')
Constrains the double’s interface using the class methods of SomeClass

object_double(some_object)
Constrains the double’s interface using the methods of some_object, rather
than a class; handy for dynamic objects that use method_missing

In addition, each of these methods has a _spy variant (such as instance_spy) as
a convenience for using a verifying double as a spy.

Stubbed Constants
Test doubles are all about controlling the environment your specs run in:
what classes are available, how certain methods behave, and so on. A key
piece of that environment is the set of Ruby constants available to your code.
With stubbed constants, you can replace a constant with a different one for
the duration of one example.

For instance, password hashing algorithms are slow by design for security
reasons—but you may want to speed them up during testing. Algorithms like
bcrypt take a tunable cost factor to specify how expensive the hash computation
will be. If your code defines this number as a constant:

13-understanding-test-doubles/03/stubbed_constants.rb
class PasswordHash

COST_FACTOR = 12

...
end

…your specs can redefine it to 1:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/03/stubbed_constants.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

13-understanding-test-doubles/03/stubbed_constants.rb
stub_const('PasswordHash::COST_FACTOR', 1)

You can use stub_const to do a number of things:

• Define a new constant
• Replace an existing constant
• Replace an entire module or class (because these are also constants)
• Avoid loading an expensive class, using a lightweight fake in its place

Sometimes, controlling your test environment means removing an existing
constant instead of stubbing one. For example, if you’re writing a library that
works either with or without ActiveRecord, you can hide the ActiveRecord con-
stant for a specific example:

13-understanding-test-doubles/03/stubbed_constants.rb
hide_const('ActiveRecord')

Hiding the ActiveRecord constant like this will cut off access to the entire module,
including any nested constants like ActiveRecord::Base. Your code won’t be able
to accidentally use ActiveRecord. Just as with partial doubles, any constants
you’ve changed or hidden will be restored at the end of each example.

Your Turn
In this chapter, we discussed the differences between stubs, mocks, spies, and
null objects. In particular, you saw how they deal with the following situations:

• Receiving expected messages
• Receiving unexpected messages
• Not receiving expected messages

We also looked at the different ways to create test doubles. Pure doubles are
entirely fake, whereas partial doubles are real Ruby objects that have fake
behavior added. Verifying doubles fall in between, and have the advantages of
both with few of the downsides of either. They’re the ones we use most often.

Now that you understand test doubles, you’ll be ready to tackle the next
chapter, where you’ll configure how and when your doubles respond to mes-
sages. But first, we have a simple exercise that demonstrates a few nuances
of verifying doubles.

Exercise
In this guided exercise, you’re going to test a Skier class that collaborates with
a TrailMap class. Starting in a fresh directory, put the following code in lib/skier.rb:

• Click HERE to purchase this book now. discuss

Your Turn • 9

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/03/stubbed_constants.rb
http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/03/stubbed_constants.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

13-understanding-test-doubles/exercises/mountain/lib/skier.rb
module Mountain

class Skier
def initialize(trail_map)
@trail_map = trail_map

end

def ski_on(trail_name)
difficulty = @trail_map.difficulty(trail_name)
@tired = true if difficulty == :expert

end

def tired?
@tired

end
end

end

Now, create a file called lib/trail_map.rb with the following contents:

13-understanding-test-doubles/exercises/mountain/lib/trail_map.rb
puts 'Loading our database query library...'
sleep(1)

module Mountain
class TrailMap

def difficulty_of(trail_name)
Look up the trail in the database

end
end

end

The TrailMap class has a difficulty_of method, but the Skier class is incorrectly
trying to call difficulty instead. If we use a verifying double to stand in for a
TrailMap, it should be able to catch this kind of error; let’s try that out.

Trying the Verifying Double

Create a file called spec/skier_spec.rb, and put the following spec in it:

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/exercises/mountain/lib/skier.rb
http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/exercises/mountain/lib/trail_map.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

13-understanding-test-doubles/exercises/mountain/spec/skier_spec.rb
require 'skier'

module Mountain
RSpec.describe Skier do

it 'gets tired after skiing a difficult slope' do
trail_map = instance_double('TrailMap', difficulty: :expert)

skier = Skier.new(trail_map)
skier.ski_on('Last Hoot')
expect(skier).to be_tired

end
end

end

This spec makes the same mistake the Skier class did with method names. It stubs
the difficulty method instead of difficulty_of. However, you’re using instance_double, so
RSpec should catch the problem—right?

Try running your spec:

$ rspec

Surprisingly, the specs pass. RSpec can only verify against a real class if that
class is actually loaded. With nothing to verify against, the verifying double
acts just like a normal, non-verifying double. So, try running it again with the
TrailMap class loaded; just pass -rtrail_map on the command line:

$ rspec -rtrail_map

The specs still pass. Moreover, they’re running much more slowly (nearly 10x
slower on our computers!) because of the time spent loading a heavyweight
dependency. Before moving on, see if you can guess why RSpec isn’t checking
your trail_map double against the real Mountain::TrailMap class.

The Problem

The problem is that the constant name passed into instance_double doesn’t match
the real class. The TrailMap class’s full name, including the module it’s nested
in, is 'Mountain::TrailMap'.

Change the instance_double call to use the correct name, and then rerun your
specs (again, with -rtrail_map). This time, they should fail the way you’d expect
them to: with an error message about the use of a nonexistent difficulty method.

There are two ways to catch these kinds of naming issues before they happen:

• Use Ruby classes instead of strings
• Configure RSpec to check that the class name exists

• Click HERE to purchase this book now. discuss

Your Turn • 11

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/exercises/mountain/spec/skier_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

You’re going to get the chance to try out both of these options. Undo the fix
you just made before you start the next step of the exercise.

Using Ruby Constants

First, let’s try using a Ruby constant to indicate which class you’re faking.
In the call to instance_double, change the string 'TrailMap' to the class TrailMap
(without quotes).

Now, run your specs the same way you did at the beginning of this exercise:
plain rspec with no command-line arguments. The first time you tried this,
RSpec gave an incorrectly passing result. Now, you’ll get an uninitialized constant
Mountain::TrailMap error, because the TrailMap class isn’t loaded.

To use the Ruby class directly like this, you’ll have to make sure the depen-
dency is loaded before your spec runs. If your specs use the class directly (as
this one now does), you’ll typically just add require 'trail_map' at the top of your
spec file.

There are times, however, when you might not want to load your dependencies
explicitly in this way:

• Your dependencies take a long time to load, like trail_map does
• You need to use a test double before the dependency even exists, as you

did with the Ledger double in the expense tracker project

Now, back out the change you just made, and we’ll look at the other way to
catch class naming issues.

Configuring RSpec to Check Names

In Library Configuration, on page ?, you used an RSpec.configure block to set
up rspec-mocks. Using the same kind of block, you can configure RSpec to
make sure that all of your verifying doubles are based on real, loaded classes.

The setting you need is called verify_doubled_constant_names. You probably don’t
want to turn it on unconditionally in spec_helper.rb. If you did, you’d never be
able to use a verifying double before its class existed! Instead, put the setting
into a file you can load on demand; let’s call it spec/support/verify_doubled_constants.rb:

13-understanding-test-doubles/exercises/mountain/spec/support/verify_doubled_constants.rb
RSpec.configure do |c|

c.mock_with :rspec do |mocks|
mocks.verify_doubled_constant_names = true

end
end

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/13-understanding-test-doubles/exercises/mountain/spec/support/verify_doubled_constants.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

When you want RSpec to be strict about your verifying doubles, just pass
-rsupport/verify_doubled_constants on the command line:

$ rspec -rtrail_map -rsupport/verify_doubled_constants

Your specs will correctly fail, and RSpec will warn you that the class name
doesn’t exist. If you use this approach, we recommend that you develop with
this setting off, but configure your continuous integration (CI) server to run
with the setting on.

Make It Easy to Replicate Your CI Setup

Repeatability is important when you’re setting up a CI system.
Few things are more frustrating than a spec passing on your local
machine but failing on the CI server.

If you’re going to use certain options only with CI, such as the
verify_doubled_constant_names setting, we recommend putting all of
these options into a script or Rake task you can run locally. That
way, when a spec fails on CI, you can just run something like
./script/ci_build and diagnose the issue on your machine.

We’ll talk more about integration with Rake in Appendix 1, RSpec
and the Wider Ruby Ecosystem, on page ?.

Wrapping Up

As we wrap up, let’s look at the trade-offs we’ve seen. Verifying doubles do
the following things:

• They raise errors when your code calls a dependency incorrectly.
• They can only do so when the dependency actually exists.
• They revert silently to regular doubles if the dependency doesn’t exist.

To deal with that last item, you can create your doubles from Ruby class
names instead of strings. It’s only practical to do so if you’ve already written
code for the dependency, and if it’s not too expensive to load it. If you can’t
use a Ruby class, you can still double-check your constant names by setting
verify_doubled_constant_names when you run your whole suite.

Using verifying doubles correctly takes a little extra up-front care. But the
benefits to your project are well worth it.

• Click HERE to purchase this book now. discuss

Your Turn • 13

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

