
Extracted from:

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

This PDF file contains pages extracted from Effective Testing with RSpec 3, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

Myron Marston
Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-198-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Testing the Invalid Case
So far, our integration spec checks only the “happy path” of saving a valid
expense. Let’s add a second spec that tries an expense missing a payee:

06-integration-specs/07/expense_tracker/spec/integration/app/ledger_spec.rb
context 'when the expense lacks a payee' do

it 'rejects the expense as invalid' do
expense.delete('payee')

result = ledger.record(expense)

expect(result).not_to be_success
expect(result.expense_id).to eq(nil)
expect(result.error_message).to include('`payee` is required')

expect(DB[:expenses].count).to eq(0)
end

end

Here, the Ledger instance should return the correct failure status and message,
and the database should have no expenses in it.

Since this behavior isn’t implemented, we want this new spec to fail:

$ bundle exec rspec spec/integration/app/ledger_spec.rb
« truncated »
Failures:

1) ExpenseTracker::Ledger#record when the expense lacks a payee rejects ↩
the expense as invalid

« truncated »
2) ExpenseTracker::Ledger#record with a valid expense successfully saves ↩
the expense in the DB

« truncated »
Finished in 0.02597 seconds (files took 0.18213 seconds to load)
2 examples, 2 failures

Failed examples:

rspec ./spec/integration/app/ledger_spec.rb:34 # ↩
ExpenseTracker::Ledger#record when the expense lacks a payee rejects the ↩
expense as invalid

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/06-integration-specs/07/expense_tracker/spec/integration/app/ledger_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

rspec ./spec/integration/app/ledger_spec.rb:20 # ↩
ExpenseTracker::Ledger#record with a valid expense successfully saves the ↩
expense in the DB

Randomized with seed 57045

That’s strange. Both specs failed. Did we break any other specs outside the
two we’re running here? Try rerunning the entire suite a few times. Your exact
output will differ from ours—you might see two failures or just one. Here’s a
test run with two failures:

$ bundle exec rspec
« truncated »
Finished in 0.06926 seconds (files took 0.21812 seconds to load)
11 examples, 2 failures, 1 pending

Failed examples:

rspec ./spec/integration/app/ledger_spec.rb:20 # ↩
ExpenseTracker::Ledger#record with a valid expense successfully saves the ↩
expense in the DB
rspec ./spec/integration/app/ledger_spec.rb:34 # ↩
ExpenseTracker::Ledger#record when the expense lacks a payee rejects the ↩
expense as invalid

Randomized with seed 32043

The output is slightly different each time you run it, because RSpec is running
the specs in random order. This technique—enabled via the config.order = :random
line in spec_helper.rb—is useful for finding order dependencies; that is, specs
whose behavior depends on which one runs first.

Test in Random Order to Find Order Dependencies

If your specs run in the same order every time, you may have one
that’s only passing because an earlier, broken one left some state
behind. Use your test suite’s random ordering option to surface
these dependencies.

A random seed gives you a specific, repeatable test order. You can replay any
such sequence by passing the --seed option to RSpec along with the seed
number reported in the output.

For example, RSpec’s output tells us that the previous run was using seed
32043. You can replay that specific test order any time you want:

$ bundle exec rspec --seed 32043
« truncated »
Finished in 0.05941 seconds (files took 0.22746 seconds to load)
11 examples, 2 failures, 1 pending

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

Failed examples:

rspec ./spec/integration/app/ledger_spec.rb:20 # ↩
ExpenseTracker::Ledger#record with a valid expense successfully saves the ↩
expense in the DB
rspec ./spec/integration/app/ledger_spec.rb:34 # ↩
ExpenseTracker::Ledger#record when the expense lacks a payee rejects the ↩
expense as invalid

Randomized with seed 32043

While RSpec isn’t able to tell you why the ordering dependency is happening,
it can certainly help you identify which specs you need to run to reproduce it.

With the --bisect option, RSpec will systematically run different portions of your
suite until it finds the smallest set that triggers a failure:

$ bundle exec rspec --bisect --seed 32043
Bisect started using options: "--seed 32043"
Running suite to find failures... (0.45293 seconds)
Starting bisect with 2 failing examples and 9 non-failing examples.
Checking that failure(s) are order-dependent... failure appears to be ↩
order-dependent

Round 1: bisecting over non-failing examples 1-9 . ignoring examples 1-5 ↩
(0.45132 seconds)
Round 2: bisecting over non-failing examples 6-9 . ignoring examples 6-7 ↩
(0.43739 seconds)
Round 3: bisecting over non-failing examples 8-9 . ignoring example 8 ↩
(0.43102 seconds)
Bisect complete! Reduced necessary non-failing examples from 9 to 1 in 1.64 ↩
seconds.

The minimal reproduction command is:
rspec './spec/acceptance/expense_tracker_api_spec.rb[1:1]' ↩
'./spec/integration/app/ledger_spec.rb[1:1:1:1,1:1:2:1]' --seed 32043

RSpec has given us a minimal set of specs we can run any time to see the
failure:

$ bundle exec rspec './spec/acceptance/expense_tracker_api_spec.rb[1:1]' ↩
'./spec/integration/app/ledger_spec.rb[1:1:1:1,1:1:2:1]' --seed 32043
Run options: include ↩
{:ids=>{"./spec/acceptance/expense_tracker_api_spec.rb"=>["1:1"], ↩
"./spec/integration/app/ledger_spec.rb"=>["1:1:1:1", "1:1:2:1"]}}

Randomized with seed 32043
*FF

« truncated »
Finished in 0.0485 seconds (files took 0.21859 seconds to load)
3 examples, 2 failures, 1 pending

• Click HERE to purchase this book now. discuss

Testing the Invalid Case • 7

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

Failed examples:

rspec ./spec/integration/app/ledger_spec.rb:20 # ↩
ExpenseTracker::Ledger#record with a valid expense successfully saves the ↩
expense in the DB
rspec ./spec/integration/app/ledger_spec.rb:34 # ↩
ExpenseTracker::Ledger#record when the expense lacks a payee rejects the ↩
expense as invalid

Randomized with seed 32043

The numbers in square brackets are called example IDs; they indicate each
example’s position in its file, relative to other examples and nested groups.
For example, some_spec.rb[2:3] would mean “the third example inside the second
group in some_spec.rb.” You can paste these values into your terminal just as
you did with line numbers in Running Specific Failures, on page ?.

With this set of specs, we can see that the new spec causes the prior spec to
fail if the new one runs first. Our database writes are leaking between tests.

Watch for Test Interaction in Integration Specs

Your integration specs interact with external resources: the file
system, the database, the network, and so on. Because these
resources are shared, you have to take extra care to restore the
system to a clean slate after each spec.

Isolating Your Specs Using Database Transactions
To solve this issue, we’re going to wrap each spec in a database transaction.
After each example runs, we want RSpec to roll back the transaction, canceling
any writes that happened and leaving the database in a clean state. Sequel
provides a test-friendly method for wrapping code in transactions.5

An RSpec around hook would be perfect for this task. You already have a
spec/support/db.rb file for database support code, so add it there, inside the
RSpec.configure block:

06-integration-specs/07/expense_tracker/spec/support/db.rb
c.around(:example, :db) do |example|

DB.transaction(rollback: :always) { example.run }
end

The sequence of calls in the new hook is a bit twisty, so bear with us for a
second. For each example marked as requiring the database (via the :db tag;
you’ll see how to use this in a moment), the following events happen:

5. http://sequel.jeremyevans.net/rdoc/files/doc/testing_rdoc.html

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/06-integration-specs/07/expense_tracker/spec/support/db.rb
http://sequel.jeremyevans.net/rdoc/files/doc/testing_rdoc.html
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

1. RSpec calls our around hook, passing it the example we’re running.

2. Inside the hook, we tell Sequel to start a new database transaction.

3. Sequel calls the inner block, in which we tell RSpec to run the example.

4. The body of the example finishes running.

5. Sequel rolls back the transaction, wiping out any changes we made to
the database.

6. The around hook finishes, and RSpec moves on to the next example.

We only want to spend time setting up the database when we actually use it.
Although starting and rolling back a transaction takes less than a tenth of a
second, that dwarfs the runtime of our fast, focused unit specs.

This is where the notion of tagging comes in. A tag is a piece of metadata—
custom information—attached to an example or group. Here, you’ll use a new
symbol, :db, to indicate that an example touches the database:

06-integration-specs/07/expense_tracker/spec/integration/an_integration_spec.rb
require_relative '../support/db'

RSpec.describe 'An integration spec', :db do
...

end

Notice that we’ve had to do two things to make sure this spec runs inside a
database transaction:

• Explicitly load the setup code from support/db
• Tag the example group with :db

If you have several spec files that touch the database, it’s easy to forget to do
one or the other of these things. The result can be specs that pass or fail
inconsistently (depending on when and how you run them).

It’d be nice to be able to tag the database-related example groups with :db and
trust that the support code will be loaded as needed. Luckily, RSpec has an
option that supports exactly this usage. In your spec_helper.rb, add the following
snippet inside the RSpec.configure block:

06-integration-specs/07/expense_tracker/spec/spec_helper.rb
RSpec.configure do |config|

config.when_first_matching_example_defined(:db) do➤

require_relative 'support/db'➤

end➤

• Click HERE to purchase this book now. discuss

Isolating Your Specs Using Database Transactions • 9

http://media.pragprog.com/titles/rspec3/code/06-integration-specs/07/expense_tracker/spec/integration/an_integration_spec.rb
http://media.pragprog.com/titles/rspec3/code/06-integration-specs/07/expense_tracker/spec/spec_helper.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

With that hook in place, RSpec will conditionally load spec/support/db.rb if (and
only if) any examples are loaded that have a :db tag.

Now, you’ll need to go add the tag to your specs. Both your acceptance and
integration specs need it at the end of the RSpec.describe line, just before the do
keyword. First, spec/acceptance/expense_tracker_api_spec.rb:

06-integration-specs/08/expense_tracker/spec/acceptance/expense_tracker_api_spec.rb
RSpec.describe 'Expense Tracker API', :db do

Next, spec/integration/app/ledger_spec.rb:

06-integration-specs/08/expense_tracker/spec/integration/app/ledger_spec.rb
RSpec.describe Ledger, :aggregate_failures, :db do

While you’re at it, you can also remove the require_relative '../../support/db' line from
ledger_spec.rb.

At last, you can run RSpec with the same random seed and get just the single
failure we were expecting:

$ bundle exec rspec --seed 32043
« truncated »
Finished in 0.05786 seconds (files took 0.22818 seconds to load)
11 examples, 1 failure, 1 pending

Failed examples:

rspec ./spec/integration/app/ledger_spec.rb:33 # ↩
ExpenseTracker::Ledger#record when the expense lacks a payee rejects the ↩
expense as invalid

Randomized with seed 32043

We’re back down to just one spec failing predictably. It’s time to continue the
Red/Green/Refactor cycle by adding just enough behavior to your object to
make the spec pass.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/06-integration-specs/08/expense_tracker/spec/acceptance/expense_tracker_api_spec.rb
http://media.pragprog.com/titles/rspec3/code/06-integration-specs/08/expense_tracker/spec/integration/app/ledger_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

