
Extracted from:

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

This PDF file contains pages extracted from Effective Testing with RSpec 3, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

Myron Marston
Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-198-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

You’ve installed RSpec and taken it for a test drive. You’ve written a few specs
and gotten a feel for how they’re different from test cases in traditional
frameworks. You’ve also seen a few ways to trim repetition from your examples.

In the process, you’ve applied the following practices:

• Structuring your examples logically into groups
• Writing clear expectations that test at the right level of detail
• Sharing common setup code across specs

RSpec is designed around these habits, but you could learn to apply them to
other test frameworks as well. You may be wondering if all that separates
RSpec from the crowd is syntax.

In this chapter, we’re going to show you that RSpec’s usefulness isn’t confined
to how your specs look. It also applies to how they run. You’re going to learn
the following practices that will help you find problems in code more quickly:

• See your specs’ output printed as documentation, to help your future self
understand the intent of the code when something goes wrong

• Run a specific set of examples, to focus on one slice of your program at
a time

• Fix a bug and rerun just the specs that failed last time

• Mark work in progress to remind you to finish something later

The tool that makes these activities possible—and even easy—is RSpec’s spec
runner. It decides which of your specs to run and when to run them. Let’s
take a look at how to make it sing.

Customizing Your Specs’ Output
When you use RSpec on a real-world project, you’ll build up a suite of dozens,
hundreds, or even thousands of examples. Most test frameworks, including
RSpec, are optimized for this kind of use. The default output format hides a
lot of detail so that it can show your specs’ progress.

The Progress Formatter
In this section, we’re going to look at a different ways to view your specs’
output. Create a new file called spec/coffee_spec.rb with the following contents:

02-running-specs/01/spec/coffee_spec.rb
RSpec.describe 'A cup of coffee' do

let(:coffee) { Coffee.new }

it 'costs $1' do

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/02-running-specs/01/spec/coffee_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

expect(coffee.price).to eq(1.00)
end

context 'with milk' do➤

before { coffee.add :milk }

it 'costs $1.25' do
expect(coffee.price).to eq(1.25)

end
end

end

This spec file uses the same techniques we saw in the previous chapter, with one
new twist: the context block starting on the highlighted line. This method groups
a set of examples and their setup code together with a common description—in
this case “with milk.” You can nest these example groups as deeply as you want.

There’s nothing mysterious going on behind the scenes here: context is just
an alias for describe. You could use them interchangeably, but we tend to use
context for phrases that modify the object we’re testing, the way “with milk”
modifies “A cup of coffee.”

This spec will need a Coffee class to test. In a full project, you’d put its definition
in a separate file and use require in your specs. But for this simple example,
it’s fine just to put the class at the top of your spec file. Here’s the start of an
implementation that’s not quite enough to pass the specs yet:

02-running-specs/01/spec/coffee_spec.rb
class Coffee

def ingredients
@ingredients ||= []

end

def add(ingredient)
ingredients << ingredient

end

def price
1.00

end
end

When you run your specs, you’ll see one dot for each completed example,
with failures and exceptions called out with letters:

$ rspec
.F

Failures:

1) A cup of coffee with milk costs $1.25
Failure/Error: expect(coffee.price).to eq(1.25)

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/02-running-specs/01/spec/coffee_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

expected: 1.25
got: 1.0

(compared using ==)
./spec/coffee_spec.rb:26:in `block (3 levels) in <top (required)>'

Finished in 0.01222 seconds (files took 0.08094 seconds to load)
2 examples, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

Here, we see one dot for the passing example, and one F for the failure. This
format is good for showing the progress of your specs as they execute. When
you’ve got hundreds of examples, you’ll see a row of dots marching across
the screen.

On the other hand, this output doesn’t give any indication of which example
is currently running, or what the expected behavior is.

When you need more detail in your test report, or need a specific format such
as HTML, RSpec’s got you covered. By choosing a different formatter, you can
tailor the output to your needs.

A formatter receives events from RSpec—such as when a test fails—and then
reports the results. Under the hood, it’s just a plain Ruby object. You can
easily create your own, and in How Formatters Work, on page ? you’ll see
how to do that. Formatters can write data in any format, and send the output
anywhere (such as to the console, a file, or over a network). Let’s take a look
at another one of the formatters that ships with RSpec.

The Documentation Formatter
RSpec’s built-in documentation formatter lists the specs’ output in an outline
format, using indentation to show grouping. If you’ve written example
descriptions with legible output in mind, the result will read almost like project
documentation. Let’s give it a try.

To see the output in documentation format, pass --format documentation (or just
-f d) to rspec:

$ rspec --format documentation

A cup of coffee
costs $1
with milk

costs $1.25 (FAILED - 1)

Failures:

• Click HERE to purchase this book now. discuss

Customizing Your Specs’ Output • 7

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

1) A cup of coffee with milk costs $1.25
Failure/Error: expect(coffee.price).to eq(1.25)

expected: 1.25
got: 1.0

(compared using ==)
./spec/coffee_spec.rb:26:in `block (3 levels) in <top (required)>'

Finished in 0.01073 seconds (files took 0.08736 seconds to load)
2 examples, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

The test report is a list of the specifications of various cups of coffee that
RSpec verified. There’s a lot of information here, and RSpec uses spacing and
capitalization to show you what’s going on:

• An example group lists all of its examples indented underneath it.

• Contexts create additional nesting, the way the withmilk example is indented
further.

• Any failing examples show the text FAILED with a footnote number for
looking up the details later on.

After the documentation at the top of the report, the Failures section shows the
following details for each failure:

• The expectation that failed
• What result you expected versus what actually happened
• The file and line number of the failing expectation

This output is designed to help you find at a glance what went wrong and how.
As we’ll see next, RSpec can provide further cues through syntax highlighting.

Syntax Highlighting
We’ve seen how RSpec’s color highlighting makes it much easier to scan the
output for passing and failing specs. We can take it a step further by installing
a code highlighter called CodeRay:1

$ gem install coderay -v 1.1.1
Successfully installed coderay-1.1.1
1 gem installed

1. https://github.com/rubychan/coderay

• 8

• Click HERE to purchase this book now. discuss

https://github.com/rubychan/coderay
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

When this gem is installed, the Ruby snippets in your specs’ output will be
color-coded just like they’d be in your text editor. For example:

$ rspec -fd

A cup of coffee
costs $1
with milk

costs $1.25 (FAILED - 1)

Failures:

1) A cup of coffee with milk costs $1.25
Failure/Error: expect(coffee.price).to eq(1.25)

expected: 1.25
got: 1.0

(compared using ==)
./spec/coffee_spec.rb:26:in `block (3 levels) in <top (required)>'

Finished in 0.0102 seconds (files took 0.09104 seconds to load)
2 examples, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

Now, the line expect(coffee.price).to eq(1.25) has Ruby syntax highlighting. Normal
method calls like coffee and price aren’t shaded, but other elements are. In
particular, both the key RSpec expect method and the number 1.25 are high-
lighted in color. This syntax highlighting is even more helpful for complex
Ruby expressions.

RSpec will automatically use CodeRay if it’s available. For Bundler-based
projects, drop it into your Gemfile and rerun bundle install. For non-Bundler
projects, install it via gem install as we’ve done here.

Identifying Slow Examples
Throughout this book, we’re going to give you advice on how to keep your
specs running quickly. To understand where the biggest bottlenecks are in
your suite, you need to be able to identify the slowest examples.

RSpec’s spec runner can help you do so. Consider the following group of
examples that take too long to run:

02-running-specs/03/spec/slow_spec.rb
RSpec.describe 'The sleep() method' do

it('can sleep for 0.1 second') { sleep 0.1 }
it('can sleep for 0.2 second') { sleep 0.2 }
it('can sleep for 0.3 second') { sleep 0.3 }
it('can sleep for 0.4 second') { sleep 0.4 }

• Click HERE to purchase this book now. discuss

Identifying Slow Examples • 9

http://media.pragprog.com/titles/rspec3/code/02-running-specs/03/spec/slow_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

it('can sleep for 0.5 second') { sleep 0.5 }
end

We can ask RSpec to list the top time-wasters by passing the --profile option
along with the number of offenders we’d like to see:

$ rspec --profile 2
.....

Top 2 slowest examples (0.90618 seconds, 59.9% of total time):
The sleep() method can sleep for 0.5 second

0.50118 seconds ./spec/slow_spec.rb:6
The sleep() method can sleep for 0.4 second

0.40501 seconds ./spec/slow_spec.rb:5

Finished in 1.51 seconds (files took 0.08911 seconds to load)
5 examples, 0 failures

Just two examples are taking over half our test time. Better get optimizing!

Running Just What You Need
In the examples in this chapter, we’ve always run all the specs together. On
a real project, you don’t necessarily want to load your entire test suite every
time you invoke RSpec.

If you’re diagnosing a specific failure, for instance, you’ll want to run just that
one example. If you’re trying to get rapid feedback on your design, you can
bypass slow or unrelated specs.

The easiest way to narrow down your test run is to pass a list of file or direc-
tory names to rspec:

$ rspec spec/unit # Load *_spec.rb in this dir and subdirs
$ rspec spec/unit/specific_spec.rb # Load just one spec file
$ rspec spec/unit spec/smoke # Load more than one directory
$ rspec spec/unit spec/foo_spec.rb # Or mix and match files and directories

Not only can you load specific files or directories, you can also filter which of
the loaded examples RSpec will actually run. Here, we’ll explore a few different
ways to run specific examples.

Running Examples by Name
Rather than running all the loaded specs, you can choose a specific example
by name, using the --example or -e option plus a search term:

$ rspec -e milk -fd
Run options: include {:full_description=>/milk/}

A cup of coffee

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

with milk
costs $1.25 (FAILED - 1)

Failures:

1) A cup of coffee with milk costs $1.25
Failure/Error: expect(coffee.price).to eq(1.25)

expected: 1.25
got: 1.0

(compared using ==)
./spec/coffee_spec.rb:26:in `block (3 levels) in <top (required)>'

Finished in 0.01014 seconds (files took 0.08249 seconds to load)
1 example, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

RSpec ran just the examples containing the word milk (in this case, just one
example). When you use this option, RSpec searches the full description of
each example; for instance, A cup of coffee with milk costs $1.25. These searches are
case-sensitive.

Running Specific Failures
Often, what you really want to do is run just the most recent failing spec.
RSpec gives us a handy shortcut here. If you pass a filename and line number
separated by a colon, RSpec will run the example that starts on that line.

You don’t even have to manually type in which file and line to rerun. Take a
look at the end of the spec output:

• Click HERE to purchase this book now. discuss

Running Just What You Need • 11

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

$ rspec
.F

« truncated »
2 examples, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

You can copy and paste the first part of that final line (before the hash) into
your terminal to run just the failing spec. Let’s do so now:

$ rspec ./spec/coffee_spec.rb:25
Run options: include {:locations=>{"./spec/coffee_spec.rb"=>[25]}}
F

« truncated »
1 example, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:25 # A cup of coffee with milk costs $1.25

RSpec ran only the single example you specified. This focusing ability becomes
even more powerful when you add a key binding for it to your text editor.
Several IDEs and editor plugins provide this behavior for you, including the
following:

• ThoughtBot’s rspec.vim plugin2

• Peter Williams’s RSpec Mode for Emacs3

• The RSpec package for Sublime Text4

• Felipe Coury’s Atom RSpec Runner5

• The RubyMine IDE from JetBrains6

With good editor support, you can quickly run the example under your cursor
with a single keystroke.

Use Editor Integration for a More Productive Experience

Having to switch back and forth between your editor and a terminal
window in order to run rspec really interrupts your workflow. We
recommend taking the time to install an editor plugin so that
running rspec is only a keystroke away.

2. https://github.com/thoughtbot/vim-rspec
3. https://www.emacswiki.org/emacs/RspecMode
4. https://github.com/SublimeText/RSpec
5. https://github.com/fcoury/atom-rspec
6. https://www.jetbrains.com/ruby/

• 12

• Click HERE to purchase this book now. discuss

https://github.com/thoughtbot/vim-rspec
https://www.emacswiki.org/emacs/RspecMode
https://github.com/SublimeText/RSpec
https://github.com/fcoury/atom-rspec
https://www.jetbrains.com/ruby/
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

Rerunning Everything That Failed
Using a line number works well when only one spec is failing. If you have
more than one failure, you can run all of them with the --only-failures flag. This
flag requires a little bit of configuration, but RSpec will coach you through
the setup process:

$ rspec --only-failures

To use `--only-failures`, you must first set ↩
`config.example_status_persistence_file_path`.

RSpec needs a place to store information about which examples are failing so
that it knows what to rerun. You supply a filename through the RSpec.configure
method, which is a catch-all for lots of different runtime options.

Add the following lines to your coffee_spec.rb file between the Coffee class defini-
tion and the specs:

02-running-specs/06/spec/coffee_spec.rb
RSpec.configure do |config|

config.example_status_persistence_file_path = 'spec/examples.txt'
end

You’ll need to rerun RSpec once without any flags (to record passing/failing
status):

$ rspec
.F

« truncated »
2 examples, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:29 # A cup of coffee with milk costs $1.25

Now, you can use the --only-failures option:

$ rspec --only-failures
Run options: include {:last_run_status=>"failed"}
F

« truncated »
1 example, 1 failure

Failed examples:

rspec ./spec/coffee_spec.rb:29 # A cup of coffee with milk costs $1.25

Let’s see what happens when the behavior gets fixed and the specs pass. Take
a swing at modifying the Coffee class to pass both examples. Here’s one possible
implementation:

• Click HERE to purchase this book now. discuss

Running Just What You Need • 13

http://media.pragprog.com/titles/rspec3/code/02-running-specs/06/spec/coffee_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

02-running-specs/06/spec/coffee_spec.rb
class Coffee

def ingredients
@ingredients ||= []

end

def add(ingredient)
ingredients << ingredient

end

def price
1.00 + ingredients.size * 0.25

end
end

With your implementation in place, rerun RSpec with the --only-failures option:

$ rspec --only-failures
Run options: include {:last_run_status=>"failed"}
.

Finished in 0.00094 seconds (files took 0.09055 seconds to load)
1 example, 0 failures

RSpec reruns the formerly failing example and verifies that it passes. If we
try this process once more, RSpec won’t have any failing examples left to run:

$ rspec --only-failures
Run options: include {:last_run_status=>"failed"}

All examples were filtered out

Finished in 0.00031 seconds (files took 0.08117 seconds to load)
0 examples, 0 failures

Another command-line option, --next-failure, offers a twist on this idea. You’ll
get a chance to try it out in the exercise at the end of this chapter.

Passing options to the rspec command isn’t the only way to run just a subset
of your examples. Sometimes, it’s more convenient to make temporary anno-
tations to your specs instead.

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/02-running-specs/06/spec/coffee_spec.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

