
Extracted from:

Programming Ruby
The Pragmatic Programmers’ Guide

Second Edition

This PDF file contains pages extracted fromProgramming Ruby, published by The Pragmatic Bookshelf.
For more information, visithttp://www.pragmaticbookshelf.com.

Note: This extract contains some colored text. is available only in online versions of the books. The printed
versions are black and white. Pagination might vary betweenthe online and printer versions; the content is

otherwise identical.

Copyright© 2004 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

http://www.pragmaticbookshelf.com

Chapter 4

Containers, Blocks,
and Iterators

A jukebox with one song is unlikely to be popular (except perhaps in some very, very
scary bars), so pretty soon we’ll have to start thinking about producing a catalog of
available songs and a playlist of songs waiting to be played.Both of these arecontain-
ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methods: add a song, remove
a song, return a list of songs, and so on. The playlist may perform additional tasks,
such as inserting advertising every so often or keeping track of cumulative play time,
but we’ll worry about these things later. In the meantime, itseems like a good idea to
develop some kind of genericSongList class, which we can specialize into catalogs
and playlists.

Containers
Before we start implementing, we’ll need to work out how to store the list of songs
inside aSongList object. We have three obvious choices. We could use the Ruby
Array type, use the RubyHash type, or create our own list structure. Being lazy, for
now we’ll look at arrays and hashes and choose one of these forour class.

Arrays
The classArray holds a collection of object references. Each object reference occupies
a position in the array, identified by a non-negative integerindex.

You can create arrays by using literals or by explicitly creating anArray object. A
literal array is simply a list of objects between square brackets.

Prepared exclusively for a Pragmatic Client 40

CONTAINERS 41

a = [3.14159, "pie", 99]

a.class → Array

a.length → 3

a[0] → 3.14159

a[1] → "pie"

a[2] → 99

a[3] → nil

b = Array.new

b.class → Array

b.length → 0

b[0] = "second"

b[1] = "array"

b → ["second", "array"]

Arrays are indexed using the[] operator. As with most Ruby operators, this is actu-
ally a method (an instance method of classArray) and hence can be overridden in
subclasses. As the example shows, array indices start at zero. Index an array with a
non-negative integer, and it returns the object at that position or returnsnil if nothing
is there. Index an array with a negative integer, and it counts from the end.

a = [1, 3, 5, 7, 9]

a[1] → 9

a[2] → 7

a[99] → nil

This indexing scheme is illustrated in more detail in Figure4.1on the following page.

You can also index arrays with a pair of numbers,[start, count]. This returns a
new array consisting of references tocount objects starting at positionstart.

a = [1, 3, 5, 7, 9]

a[1, 3] → [3, 5, 7]

a[3, 1] → [7]

a[3, 2] → [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are sepa-
rated by two or three periods. The two-period form includes the end position, and the
three-period form does not.

a = [1, 3, 5, 7, 9]

a[1..3] → [3, 5, 7]

a[1...3] → [3, 5]

a[3..3] → [7]

a[3..1] → [5, 7, 9]

The[] operator has a corresponding[]= operator, which lets you set elements in the
array. If used with a single integer index, the element at that position is replaced by
whatever is on the right side of the assignment. Any gaps thatresult will be filled with
nil.

Prepared exclusively for a Pragmatic Client

CONTAINERS 42

Figure 4.1. How arrays are indexed

Positive→ 0 1 2 3 4 5 6 Negative
indices −7 −6 −5 −4 −3 −2 −1 ← indices

a = “ant” “bat” “cat” “dog” “elk” “fly” “gnu”

a[2]→ “cat”

a[3]→ “elk”

a[1..3]→ “bat” “cat” “dog”

a[3..1]→ “elk” “fly” “gnu”

a[4..2]→ “elk” “fly”

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[1] = ’bat’ → [1, "bat", 5, 7, 9]

a[3] = ’cat’ → [1, "bat", "cat", 7, 9]

a[3] = [9, 8] → [1, "bat", "cat", [9, 8], 9]

a[6] = 99 → [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to[]= is two numbers (a start and a length) or a range, then those elements
in the original array are replaced by whatever is on the rightside of the assignment.
If the length is zero, the right side is inserted into the array before the start position;
no elements are removed. If the right side is itself an array,its elements are used in
the replacement. The array size is automatically adjusted if the index selects a different
number of elements than are available on the right side of theassignment.

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[2, 2] = ’cat’ → [1, 3, "cat", 9]

a[2, 0] = ’dog’ → [1, 3, "dog", "cat", 9]

a[1, 1] = [9, 8, 7] → [1, 9, 8, 7, "dog", "cat", 9]

a[0..3] = [] → ["dog", "cat", 9]

a[5..6] = 99, 98 → ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using these, you can treat arrays
as stacks, sets, queues, dequeues, and fifos. A complete listof array methods starts on
page406.

Hashes
Hashes(sometimes known asassociative arrays, maps, or dictionaries) are similar to
arrays in that they are indexed collections of object references. However, while you
index arrays with integers, you can index a hash with objectsof any type: strings,
regular expressions, and so on. When you store a value in a hash, you actually supply

Prepared exclusively for a Pragmatic Client

CONTAINERS 43

two objects—the index, normally called thekey, and the value. You can subsequently
retrieve the value by indexing the hash with the same key. Thevalues in a hash can be
objects of any type.

The example that follows uses hash literals: a list ofkey=> valuepairs between braces.

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length → 3

h['dog'] → "canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h → {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",

"donkey"=>"asinine", "dog"=>"canine"}

Compared with arrays, hashes have one significant advantage: they can use any object
as an index. However, they also have a significant disadvantage: their elements are not
ordered, so you cannot easily use a hash as a stack or a queue.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A
full list of the methods implemented by classHash starts on page471.

Implementing a SongList Container
After that little diversion into arrays and hashes, we’re now ready to implement the
jukebox’sSongList. Let’s invent a basic list of methods we need in ourSongList.
We’ll want to add to it as we go along, but this will do for now.

append(song) → list

Append the given song to the list.

delete_first() → song

Remove the first song from the list, returning that song.

delete_last() → song

Remove the last song from the list, returning that song.

[index] → song

Return the song at the integerindex.

with_title(title) → song

Return the song with the given title.

This list gives us a clue to the implementation. The ability to append songs at the end,
and remove them from both the front and end, suggests adequeue—a double-ended
queue—which we know we can implement using anArray. Similarly, the ability to
return a song at an integer position in the list is supported by arrays.

Prepared exclusively for a Pragmatic Client

CONTAINERS 44

However, you also need to be able to retrieve songs by title, which may suggest using
a hash, with the title as a key and the song as a value. Could we use a hash? Well,
possibly, but this causes problems. First, a hash is unordered, so we’d probably need to
use an ancillary array to keep track of the list. A second, bigger problem is that a hash
does not support multiple keys with the same value. That would be a problem for our
playlist, where the same song may be queued for playing multiple times. So, for now
we’ll stick with an array of songs, searching it for titles when needed. If this becomes
a performance bottleneck, we can always add some kind of hash-based lookup later.

We’ll start our class with a basicinitialize method, which creates theArray we’ll
use to hold the songs and stores a reference to it in the instance variable@songs.

class SongList

def initialize

@songs = Array.new

end

end

TheSongList#append method adds the given song to the end of the@songs array. It
also returnsself, a reference to the currentSongList object. This is a useful convention,
as it lets us chain together multiple calls toappend. We’ll see an example of this later.

class SongList

def append(song)

@songs.push(song)

self

end

end

Then we’ll add thedelete_first anddelete_last methods, trivially implemented
usingArray#shift andArray#pop, respectively.

class SongList

def delete_first

@songs.shift

end

def delete_last

@songs.pop

end

end

So far, so good. Our next method is[], which accesses elements by index. These
kind of simple delegating methods occur frequently in Ruby code: don’t worry if your
code ends up containing a bunch of one- or two-line methods—it’s a sign that you’re
designing things correctly.

class SongList

def [](index)

@songs[index]

end

end

Prepared exclusively for a Pragmatic Client

CONTAINERS 45

At this point, a quick test may be in order. To do this, we’re going to use a testing
framework called TestUnit that comes with the standard Rubydistributions. We won’t
describe it fully yet (we do that in theUnit Testingchapter starting on page143). For
now, we’ll just say that the methodassert_equal checks that its two parameters are
equal, complaining bitterly if they aren’t. Similarly, themethodassert_nil complains
unless its parameter isnil. We’re using these assertions to verify that the correct songs
are deleted from the list.

The test contains some initial housekeeping, necessary to tell Ruby to use the TestUnit
framework and to tell the framework that we’re writing some test code. Then we create
a SongList and four songs and append the songs to the list. (Just to show off, we use
the fact thatappend returns theSongList object to chain together these method calls.)
We can then test our[] method, verifying that it returns the correct song (ornil) for a
set of indices. Finally, we delete songs from the start and end of the list, checking that
the correct songs are returned.

require 'test/unit'

class TestSongList < Test::Unit::TestCase

def test_delete

list = SongList.new

s1 = Song.new('title1', 'artist1', 1)

s2 = Song.new('title2', 'artist2', 2)

s3 = Song.new('title3', 'artist3', 3)

s4 = Song.new('title4', 'artist4', 4)

list.append(s1).append(s2).append(s3).append(s4)

assert_equal(s1, list[0])

assert_equal(s3, list[2])

assert_nil(list[9])

assert_equal(s1, list.delete_first)

assert_equal(s2, list.delete_first)

assert_equal(s4, list.delete_last)

assert_equal(s3, list.delete_last)

assert_nil(list.delete_last)

end

end

produces:

Loaded suite

Started

.

Finished in 0.002314 seconds.

1 tests, 8 assertions, 0 failures, 0 errors

The running test confirms that eight assertions were executed in one test method, and
they all passed. We’re on our way to a working jukebox!

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 46

Now we need to add the facility that lets us look up a song by title. This is going to
involve scanning through the songs in the list, checking thetitle of each. To do this, we
first need to spend a couple of pages looking at one of Ruby’s neatest features: iterators.

Blocks and Iterators
Our next problem withSongList is to implement the methodwith_title that takes
a string and searches for a song with that title. This seems straightforward: we have an
array of songs, so we’ll go through it one element at a time, looking for a match.

class SongList

def with_title(title)

for i in 0...@songs.length

return @songs[i] if title == @songs[i].name

end

return nil

end

end

This works, and it looks comfortingly familiar: afor loop iterating over an array. What
could be more natural?

It turns out thereis something more natural. In a way, ourfor loop is somewhat too
intimate with the array; it asks for a length, and it then retrieves values in turn until it
finds a match. Why not just ask the array to apply a test to each of its members? That’s
just what thefind method inArray does.

class SongList

def with_title(title)

@songs.find {|song| title == song.name }

end

end

The methodfind is an iterator—a method that invokes a block of code repeatedly.
Iterators and code blocks are among the more interesting features of Ruby, so let’s
spend a while looking into them (and in the process we’ll find out exactly what that
line of code in ourwith_title method actually does).

Implementing Iterators
A Ruby iterator is simply a method that can invoke a block of code. At first sight, a
block in Ruby looks just like a block in C, Java, C#, or Perl. Unfortunately, in this
case looks are deceiving—a Ruby blockis a way of grouping statements, but not in the
conventional way.

First, a block may appear only in the source adjacent to a method call; the block is
written starting on the same line as the method call’s last parameter (or the closing

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 47

parenthesis of the parameter list). Second, the code in the block is not executed at the
time it is encountered. Instead, Ruby remembers the contextin which the block appears
(the local variables, the current object, and so on) and thenenters the method. This is
where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
theyield statement. Whenever ayield is executed, it invokes the code in the block.
When the block exits, control picks back up immediately after theyield.1 Let’s start
with a trivial example.

def three_times

yield

yield

yield

end

three_times { puts "Hello" }

produces:

Hello

Hello

Hello

The block (the code between the braces) is associated with the call to the method
three_times. Within this method,yield is called three times in a row. Each time, it
invokes the code in the block, and a cheery greeting is printed. What makes blocks inter-
esting, however, is that you can pass parameters to them and receive values from them.
For example, we could write a simple function that returns members of the Fibonacci
series up to a certain value.2

def fib_up_to(max)

i1, i2 = 1, 1 # parallel assignment (i1 = 1 and i2 = 1)

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

fib_up_to(1000) {|f| print f, " " }

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

1. Programming-language buffs will be pleased to know that the keywordyield was chosen to echo the
yield function in Liskov’s language CLU, a language that is more than 20 years old and yet contains features
that still haven’t been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 48

In this example, theyield statement has a parameter. This value is passed to the asso-
ciated block. In the definition of the block, the argument list appears between vertical
bars. In this instance, the variablef receives the value passed to theyield, so the block
prints successive members of the series. (This example alsoshows parallel assignment
in action. We’ll come back to this on page85.) Although it is common to pass just one
value to a block, this is not a requirement; a block may have any number of arguments.

If the parameters to a block are existing local variables, those variables will be used as
the block parameters, and their values may be changed by the block’s execution. The
same thing applies to variables inside the block: if they appear for the first time in the
block, they’re local to the block. If instead they first appeared outside the block, the
variables will be shared between the block and the surrounding environment.3

In this (contrived) example, we see that the block inherits the variablesa andb from
the surrounding scope, butc is local to the block (the methoddefined? returnsnil if
its argument is not defined).

a = [1, 2]

b = 'cat'

a.each {|b| c = b * a[1] }

a → [1, 2]

b → 2

defined?(c) → nil

A block may also return a value to the method. The value of the last expression evalu-
ated in the block is passed back to the method as the value of theyield. This is how the
find method used by classArray works.4 Its implementation would look something
like the following.

class Array

def find

for i in 0...size

value = self[i]

return value if yield(value)

end

return nil

end

end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } → 7

This passes successive elements of the array to the associated block. If the block returns
true, the method returns the corresponding element. If no element matches, the method
returnsnil. The example shows the benefit of this approach to iterators.The Array

3. Although extremely useful at times, this feature may leadto unexpected behavior and is hotly debated
in the Ruby community. It is possible that Ruby 2.0 will change the way blocks inherit local variables.

4. Thefind method is actually defined in moduleEnumerable, which is mixed into classArray.

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 49

class does what it does best, accessing array elements, leaving the application code to
concentrate on its particular requirement (in this case, finding an entry that meets some
mathematical criteria).

Some iterators are common to many types of Ruby collections.We’ve looked atfind
already. Two others areeach andcollect. each is probably the simplest iterator—all
it does is yield successive elements of its collection.

[1, 3, 5, 7, 9].each {|i| puts i }

produces:

1

3

5

7

9

Theeach iterator has a special place in Ruby; on page97we’ll describe how it’s used
as the basis of the language’sfor loop, and starting on page113we’ll see how defining
aneach method can add a whole lot more functionality to your class for free.

Another common iterator iscollect, which takes each element from the collection
and passes it to the block. The results returned by the block are used to construct a new
array. For instance:

["H", "A", "L"].collect {|x| x.succ } → ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in
the Fibonacci example, an iterator can return derived values. This capability is used by
Ruby input/output classes, which implement an iterator interface that returns successive
lines (or bytes) in an I/O stream. (This example usesdo. . .end to define a block. The
only difference between this notation and using braces to define blocks is precedence:
do. . .end binds lower than {. . . }. We discuss the impact of this on page341.)

f = File.open("testfile")

f.each do |line|

puts line

end

f.close

produces:

This is line one

This is line two

This is line three

And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named)inject
method1.8 (defined in the moduleEnumerable) lets you accumulate a value across the

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 50

members of a collection. For example, you can sum all the elements in an array, and
find their product, using code such as

[1,3,5,7].inject(0) {|sum, element| sum+element} → 16

[1,3,5,7].inject(1) {|product, element| product*element} → 105

inject works like this: the first time the associated block is called, sum is set to
inject’s parameter andelement is set to the first element in the collection. The second
and subsequent times the block is called,sum is set to the value returned by the block
on the previous call. The final value ofinject is the value returned by the block the
last time it was called. There’s one final wrinkle: ifinject is called with no parameter,
it uses the first element of the collection as the initial value and starts the iteration with
the second value. This means that we could have written the previous examples as

[1,3,5,7].inject {|sum, element| sum+element} → 16

[1,3,5,7].inject {|product, element| product*element} → 105

Internal and External Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of lan-
guages such as C++ and Java. In the Ruby approach, the iterator is internal to the
collection—it’s simply a method, identical to any other, that happens to callyield
whenever it generates a new value. The thing that uses the iterator is just a block of
code associated with this method.

In other languages, collections don’t contain their own iterators. Instead, they generate
external helper objects (for example, those based on Java’sIterator interface) that
carry the iterator state. In this, as in many other ways, Rubyis a transparent language.
When you write a Ruby program, you concentrate on getting thejob done, not on
building scaffolding to support the language itself.

It’s probably also worth spending a paragraph looking at whyRuby’s internal itera-
tors aren’t always the best solution. One area where they fall down badly is where you
need to treat an iterator as an object in its own right (for example, passing the iter-
ator into a method that needs to access each of the values returned by that iterator).
It’s also difficult to iterate over two collections in parallel using Ruby’s internal iter-
ator scheme. Fortunately, Ruby 1.81.8 comes with theGenerator library (described on
page662), which implements external iterators in Ruby for just suchoccasions.

Blocks for Transactions
Although blocks are often the target of an iterator, they also have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-
actional control. For example, you’ll often open a file, do something with its contents,
and then want to ensure that the file is closed when you finish. Although you can do this

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 51

using conventional code, an argument exists for making the file responsible for closing
itself. We can do this with blocks. A naive implementation (ignoring error handling)
could look something like the following.

class File

def File.open_and_process(*args)

f = File.open(*args)

yield f

f.close()

end

end

File.open_and_process("testfile", "r") do |file|

while line = file.gets

puts line

end

end

produces:

This is line one

This is line two

This is line three

And so on...

open_and_process is aclass method—it may be called independently of any particu-
lar file object. We want it to take the same arguments as the conventionalFile.open
method, but we don’t really care what those arguments are. Todo this, we speci-
fied the arguments as*args, meaning “collect the actual parameters passed to the
method into an array namedargs.” We then callFile.open, passing it*args as
a parameter. This expands the array back into individual parameters. The net result
is that open_and_process transparently passes whatever parameters it received to
File.open.

Once the file has been opened,open_and_process callsyield, passing the open file
object to the block. When the block returns, the file is closed. In this way, the responsi-
bility for closing an open file has been passed from the user offile objects back to the
files themselves.

The technique of having files manage their own life cycle is souseful that the class
File supplied with Ruby supports it directly. IfFile.open has an associated block,
then that block will be invoked with a file object, and the file will be closed when
the block terminates. This is interesting, as it means thatFile.open has two different
behaviors: when called with a block, it executes the block and closes the file. When
called without a block, it returns the file object. This is made possible by the method
Kernel.block_given?, which returnstrue if a block is associated with the current
method. Using this method, you could implement something similar to the standard
File.open (again, ignoring error handling) using the following.

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 52

class File

def File.my_open(*args)

result = file = File.new(*args)

If there's a block, pass in the file and close

the file when it returns

if block_given?

result = yield file

file.close

end

return result

end

end

This has one last twist: in the previous examples of using blocks to control resources,
we haven’t addressed error handling. If we wanted to implement these methods prop-
erly, we’d need to ensure that we closed files even if the code processing that file some-
how aborted. We do this using exception handling, which we talk about later (starting
on page101).

Blocks Can Be Closures
Let’s get back to our jukebox for a moment (remember the jukebox?). At some point
we’ll be working on the code that handles the user interface—the buttons that people
press to select songs and control the jukebox. We’ll need to associate actions with
those buttons: pressSTART and the music starts. It turns out that Ruby’s blocks are
a convenient way to do this. Let’s start by assuming that the people who made the
hardware implemented a Ruby extension that gives us a basic button class. (We talk
about extending Ruby beginning on page261.)

start_button = Button.new("Start")

pause_button = Button.new("Pause")

...

What happens when the user presses one of our buttons? In theButton class, the hard-
ware folks rigged things so that a callback method,button_pressed, will be invoked.
The obvious way of adding functionality to these buttons is to create subclasses of
Button and have each subclass implement its ownbutton_pressed method.

class StartButton < Button

def initialize

super("Start") # invoke Button's initialize

end

def button_pressed

do start actions...

end

end

start_button = StartButton.new

Prepared exclusively for a Pragmatic Client

BLOCKS AND ITERATORS 53

This has two problems. First, this will lead to a large numberof subclasses. If the
interface toButton changes, this could involve us in a lot of maintenance. Second, the
actions performed when a button is pressed are expressed at the wrong level; they are
not a feature of the button but are a feature of the jukebox that uses the buttons. We can
fix both of these problems using blocks.

songlist = SongList.new

class JukeboxButton < Button

def initialize(label, &action)

super(label)

@action = action

end

def button_pressed

@action.call(self)

end

end

start_button = JukeboxButton.new("Start") { songlist.start }

pause_button = JukeboxButton.new("Pause") { songlist.pause }

The key to all this is the second parameter toJukeboxButton#initialize. If the last
parameter in a method definition is prefixed with an ampersand(such as&action),
Ruby looks for a code block whenever that method is called. That code block is con-
verted to an object of classProc and assigned to the parameter. You can then treat
the parameter as any other variable. In our example, we assigned it to the instance
variable@action. When the callback methodbutton_pressed is invoked, we use the
Proc#call method on that object to invoke the block.

So what exactly do we have when we create aProc object? The interesting thing is that
it’s more than just a chunk of code. Associated with a block (and hence aProc object)
is all the context in which the block wasdefined: the value ofself and the methods,
variables, and constants in scope. Part of the magic of Ruby is that the block can still
use all this original scope information even if the environment in which it was defined
would otherwise have disappeared. In other languages, thisfacility is called aclosure.

Let’s look at a contrived example. This example uses the methodlambda, which con-
verts a block to aProc object.

def n_times(thing)

return lambda {|n| thing * n }

end

p1 = n_times(23)

p1.call(3) → 69

p1.call(4) → 92

p2 = n_times("Hello ")

p2.call(3) → "Hello Hello Hello "

Prepared exclusively for a Pragmatic Client

CONTAINERS EVERYWHERE 54

The methodn_times returns aProc object that references the method’s parameter,
thing. Even though that parameter is out of scope by the time the block is called, the
parameter remains accessible to the block.

Containers Everywhere
Containers, blocks, and iterators are core concepts in Ruby. The more you write in
Ruby, the more you’ll find yourself moving away from conventional looping constructs.
Instead, you’ll write classes that support iteration over their contents. And you’ll find
that this code is compact, easy to read, and a joy to maintain.

Prepared exclusively for a Pragmatic Client

