Extracted from:

rogramming Ruby
The Pragmatic Programmers’ Guide
Second Edition

This PDF file contains pages extracted fremogramming Rubypublished by The Pragmatic Bookshelf.
For more information, visihttp://www.pragmaticbookshelf.com.

Note: This extract contains some colored text. is available amlyriline versions of the books. The printed
versions are black and white. Pagination might vary betvikeronline and printer versions; the content is
otherwise identical.

Copyright© 2004 The Pragmatic Programmers, LLC
All rights reserved

No part of this publication may be reproduced, stored in@en! system, or transmitted, in any form, or by any meates;tenic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.


http://www.pragmaticbookshelf.com

Chapter 4

Containers, Blocks,
and lterators

A jukebox with one song is unlikely to be popular (except pg$in some very, very
scary bars), so pretty soon we’ll have to start thinking a@lpyoducing a catalog of
available songs and a playlist of songs waiting to be plageth of these areontain-
ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methadd a song, remove
a song, return a list of songs, and so on. The playlist mayopmridditional tasks,
such as inserting advertising every so often or keeping tohcumulative play time,
but we’ll worry about these things later. In the meantimsgiéms like a good idea to
develop some kind of generfiongList class, which we can specialize into catalogs
and playlists.

Containers

Before we start implementing, we’'ll need to work out how toretthe list of songs
inside aSongList object. We have three obvious choices. We could use the Ruby
Array type, use the RubMash type, or create our own list structure. Being lazy, for
now we’ll look at arrays and hashes and choose one of thesaifaiass.

Arrays

The clasg\rray holds a collection of object references. Each object refe®ccupies
a position in the array, identified by a non-negative intégeex.

You can create arrays by using literals or by explicitly ¢iregaanArray object. A
literal array is simply a list of objects between square kets:

Prepared exclusively for a Pragmatic Client




CONTAINERS

a = [ 3.14159, "pie", 99 ]

a.class —  Array
a.length — 3

alo] —  3.14159
a[l] —  "pie"
al[2] — 99

a[3] —  nil

b = Array.new

b.class —  Array

b.length — 0

b[0] = "second"

b[1l] = "array"

b —  ["second", "array"]
Arrays are indexed using the] operator. As with most Ruby operators, this is actu-
ally a method (an instance method of classay) and hence can be overridden in
subclasses. As the example shows, array indices start@tIpelex an array with a
non-negative integer, and it returns the object at thattjposdr returnsnil if nothing
is there. Index an array with a negative integer, and it cofrom the end.

a=[1,3,5, 7,91

al[-1] — 9

al[-2] — 7

a[-99] — nil
This indexing scheme is illustrated in more detail in Figdireon the following page.

You can also index arrays with a pair of numbdrstart, count ]. This returns a
new array consisting of referencesdaunt objects starting at positiostart.

a=1[1,3,57,9]

a1, 31 — [3, 5, 7]

a[3, 11 — [7]

a[-3, 21 — [5, 7]
Finally, you can index arrays using ranges, in which stadt emd positions are sepa-
rated by two or three periods. The two-period form includeseénd position, and the
three-period form does not.

a=1[1,3,5 7,91

a[l..3] — [3, 5, 7]

a[1...3] —  [3, 5]

a[3..3] —  [7]

a[-3..-11 — [5, 7, 9]
The [ ] operator has a correspondind= operator, which lets you set elements in the
array. If used with a single integer index, the element at plogition is replaced by
whatever is on the right side of the assignment. Any gapsrésait will be filled with
nil.

Prepared exclusively for a Pragmatic Client




CONTAINERS

Figure 4.1. How arrays are indexed

Positive— 0 1 2 3 4 5 6 Negative
indices -7 —6 -5 —4 -3 -2 —1 «indices
a=| "ant’ | “bat’ | “cat’ | “dog” | “elk” | *fy" | “gnu” |

al[2] — “cat”
a[-3] — “elk”
a[1..3] — [ “bat’ | “cat’ [ “dog”
a[-3..-1] — | “elk” |‘ﬂy" |“gnu”|
al4..-2] — “fly”
|\ J
a=[1,3,5 7,91 — [1,3,5,7, 9]
a[1l] = ’bat’ — [1, "bat", 5, 7, 9]
a[-3] = ’cat’ — [1, "bat", "cat", 7, 9]
a[3l =[9, 81 — [1, "bat", "cat", [9, 8], 9]
a[6] = 99 — [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to[ 1= is two numbers (a start and a length) or a range, then thoseats
in the original array are replaced by whatever is on the rgj¢ of the assignment.
If the length is zero, the right side is inserted into the yaibbafore the start position;
no elements are removed. If the right side is itself an aitayelements are used in
the replacement. The array size is automatically adjustbe index selects a different
number of elements than are available on the right side cdisegnment.

a=1[1,3,5,7
al[2, 2] = ’cat’
al[2, 0] = ’dog’
all, 11 =1 9, 8
al0..3] =[]
a[5..6] = 99, 98

, 91 — I1, 3, 5,7, 9]
— [1, 3, "cat", 9]
— [1, 3, "dog", "cat", 9]
, 71 — [1, 9, 8, 7, "dog", "cat", 9]
—  ["dog", "cat", 9]
—  ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Usingetheu can treat arrays
as stacks, sets, queues, dequeues, and fifos. A complaitdisay methods starts on

page406

Hashes

Hasheqsometimes known a@ssociative arraysmaps or dictionarieg are similar to

arrays in that they are indexed collections of object refees. However, while you
index arrays with integers, you can index a hash with objettany type: strings,
regular expressions, and so on. When you store a value inha y@s actually supply

Prepared exclusively for a Pragmatic Client



CONTAINERS

two objects—the index, normally called tkey, and the value. You can subsequently
retrieve the value by indexing the hash with the same keyvahees in a hash can be
objects of any type.

The example that follows uses hash literals: a lidteyf=> valuepairs between braces.

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length — 3

h['dog'] — '"canine"

h['cow'] = 'bovine'

h[12] = 'dodecine’

h['cat'] = 99

h —  {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",
"donkey"=>"asinine", "dog"=>"canine"}

Compared with arrays, hashes have one significant advarttegyecan use any object
as an index. However, they also have a significant disadgantaeir elements are not
ordered, so you cannot easily use a hash as a stack or a queue.

You'll find that hashes are one of the most commonly used datatares in Ruby. A
full list of the methods implemented by clagssh starts on pagé71

Implementing a SongList Container

After that little diversion into arrays and hashes, we'ravnmeady to implement the
jukebox’sSongList. Let’s invent a basic list of methods we need in SangList.
We'll want to add to it as we go along, but this will do for now.

append(song) — list
Append the given song to the list.

delete_first() — song
Remove the first song from the list, returning that song.

delete_last() — song
Remove the last song from the list, returning that song.

[index] — song
Return the song at the integedex

with_title(title) — song
Return the song with the given title.

This list gives us a clue to the implementation. The abilitygppend songs at the end,
and remove them from both the front and end, suggesisgqaeue-a double-ended
gueue—which we know we can implement usingsamray. Similarly, the ability to
return a song at an integer position in the list is supportedrtays.

Prepared exclusively for a Pragmatic Client




CONTAINERS

However, you also need to be able to retrieve songs by titigtwmay suggest using
a hash, with the title as a key and the song as a value. Couldswe tnash? Well,
possibly, but this causes problems. First, a hash is uneddso we’d probably need to
use an ancillary array to keep track of the list. A secondgdigproblem is that a hash
does not support multiple keys with the same value. That evbela problem for our
playlist, where the same song may be queued for playing phelitimes. So, for now
we'll stick with an array of songs, searching it for titles ehneeded. If this becomes
a performance bottleneck, we can always add some kind ofthaséd lookup later.

We'll start our class with a basimitialize method, which creates theray we'll
use to hold the songs and stores a reference to it in the testamiabledsongs.

class SongLlist
def initialize
@songs = Array.new
end
end

The SongList#append method adds the given song to the end of@kengs array. It
also returnself areference to the curre$ungList object. This is a useful convention,
as it lets us chain together multiple callsaispend. We'll see an example of this later.

class Songlist
def append(song)
@songs.push(song)
self
end
end

Then we'll add thedelete_first anddelete_last methods, trivially implemented
usingArray#shift andArray#pop, respectively.

class Songlist
def delete_first
@songs.shift
end
def delete_last
@songs.pop
end
end

So far, so good. Our next method [ig, which accesses elements by index. These
kind of simple delegating methods occur frequently in Rubglec don’t worry if your
code ends up containing a bunch of one- or two-line methotls-a-sign that you're
designing things correctly.

class Songlist
def [](index)
@songs[index]
end
end

Prepared exclusively for a Pragmatic Client




CONTAINERS

At this point, a quick test may be in order. To do this, we'réngoto use a testing
framework called TestUnit that comes with the standard Riiblyibutions. We won't
describe it fully yet (we do that in thenit Testingchapter starting on paget3. For
now, we'll just say that the methagbsert_equal checks that its two parameters are
equal, complaining bitterly if they aren’t. Similarly, theethodassert_nil complains
unless its parameterigl. We're using these assertions to verify that the correcgson
are deleted from the list.

The test contains some initial housekeeping, necessagjl ®uby to use the TestUnit
framework and to tell the framework that we're writing sorasttcode. Then we create
aSongList and four songs and append the songs to the list. (Just to sffiomeouse
the fact thatippend returns theSongList object to chain together these method calls.)
We can then test our] method, verifying that it returns the correct songr{ot) for a
set of indices. Finally, we delete songs from the start ambaénthe list, checking that
the correct songs are returned.

require 'test/unit’

class TestSonglist < Test::Unit::TestCase

def test_delete

list = Songlist.new
sl = Song.new('titlel', 'artistl', 1)

s2 = Song.new('title2', 'artist2', 2)
s3 = Song.new('title3', 'artist3', 3)
s4 = Song.new('title4', 'artist4', 4)

list.append(sl).append(s2).append(s3).append(s4)
assert_equal(sl, list[0])
assert_equal(s3, list[2])
assert_nil(1list[9])
assert_equal(sl, list.delete_first)
assert_equal(s2, list.delete_first)
assert_equal(s4, list.delete_last)
assert_equal(s3, list.delete_last)
assert_nil(list.delete_last)
end
end

produces:

Loaded suite -
Started

Finished in 0.002314 seconds.

1 tests, 8 assertions, 0 failures, 0O errors

The running test confirms that eight assertions were exddéntene test method, and
they all passed. We're on our way to a working jukebox!

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

Now we need to add the facility that lets us look up a song Hg. tithis is going to
involve scanning through the songs in the list, checkingitleeof each. To do this, we
first need to spend a couple of pages looking at one of Rubgtestfeatures: iterators.

Blocks and Iterators

Our next problem witlSongList is to implement the methoglith_title that takes
a string and searches for a song with that title. This seeragbtforward: we have an
array of songs, so we’'ll go through it one element at a timekileg for a match.

class Songlist
def with_title(title)
for i in 0...@songs.length
return @songs[i] if title == @songs[i].name
end
return nil
end
end

This works, and it looks comfortingly familiar: £or loop iterating over an array. What
could be more natural?

It turns out ther@s something more natural. In a way, ofwr loop is somewhat too
intimate with the array; it asks for a length, and it theniests values in turn until it
finds a match. Why not just ask the array to apply a test to ebithmembers? That's
just what thefind method inArray does.

class Songlist
def with_title(title)
@songs.find {|song| title == song.name }
end
end

The methodfind is aniterator—a method that invokes a block of code repeatedly.
Iterators and code blocks are among the more interestirtgrésaof Ruby, so let's
spend a while looking into them (and in the process we’'ll find @xactly what that
line of code in ouwith_title method actually does).

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block af&oAt first sight, a
block in Ruby looks just like a block in C, Java, C#, or Perl.faftunately, in this
case looks are deceiving—a Ruby blasla way of grouping statements, but not in the
conventional way.

First, a block may appear only in the source adjacent to a adethll; the block is
written starting on the same line as the method call’'s lasampater (or the closing

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

parenthesis of the parameter list). Second, the code inltlo& 5 not executed at the
time it is encountered. Instead, Ruby remembers the cointasttich the block appears
(the local variables, the current object, and so on) and éméers the method. This is
where the magic starts.

Within the method, the block may be invoked, almost as if itanemethod itself, using
theyield statement. Wheneverydeld is executed, it invokes the code in the block.
When the block exits, control picks back up immediately ratfte yield.! Let's start
with a trivial example.

def three_times
yield
yield
yield
end
three_times { puts "Hello" }

produces:

Hello
Hello
Hello

The block (the code between the braces) is associated wétleat to the method
three_times. Within this methodyield is called three times in a row. Each time, it
invokes the code in the block, and a cheery greeting is tivi#hat makes blocks inter-
esting, however, is that you can pass parameters to theneaee values from them.
For example, we could write a simple function that returnsniners of the Fibonacci
series up to a certain valde.
def fib_up_to(max)
i1, i2 =1, 1 # parallel assignment (il = 1 and i2 = 1)
while il <= max
yield il
i1, i2 = i2, il1+i2
end
end
fib_up_to(1000) {|f| print £, " " }

produces:
1123581321 3455 89 144 233 377 610 987

1. Programming-language buffs will be pleased to know theteywordyield was chosen to echo the
yield function in Liskov's language CLU, a language that is moentB0 years old and yet contains features
that still haven't been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integertingtarith two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is so@etused in sorting algorithms and in
analyzing natural phenomena

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

In this example, thgield statement has a parameter. This value is passed to the asso-
ciated block. In the definition of the block, the argumerttdippears between vertical
bars. In this instance, the varialfleeceives the value passed to the1d, so the block
prints successive members of the series. (This exampleshises parallel assignment

in action. We'll come back to this on pa@é.) Although it is common to pass just one
value to a block, this is not a requirement; a block may hayenamber of arguments.

If the parameters to a block are existing local variablesséhvariables will be used as
the block parameters, and their values may be changed bydbledexecution. The
same thing applies to variables inside the block: if theyesgpfor the first time in the
block, they're local to the block. If instead they first apphoutside the block, the
variables will be shared between the block and the surragnetivironment.

In this (contrived) example, we see that the block inhehtsvariablesa andb from
the surrounding scope, bats local to the block (the methatkfined? returnsnil if
its argument is not defined).

a=[1, 2]

b = 'cat'

a.each {|b] ¢ = b * a[l] }
a —  [1, 2]
b - 2

defined?(c) — nil

A block may also return a value to the method. The value ofdsedxpression evalu-
ated in the block is passed back to the method as the value pi#fid. This is how the
find method used by claggrray works? Its implementation would look something
like the following.

class Array
def find
for i in 0...size
value = self[i]
return value if yield(value)
end
return nil
end
end

[1, 3, 5, 7, 9].find {|v] v*v > 30 } — 7

This passes successive elements of the array to the agsbioiatk. If the block returns
true, the method returns the corresponding element. If no elematthes, the method
returnsnil. The example shows the benefit of this approach to iterafdrsArray

3. Although extremely useful at times, this feature may leadnexpected behavior and is hotly debated
in the Ruby community. It is possible that Ruby 2.0 will charige way blocks inherit local variables.

4. Thefind method is actually defined in modui@umerable, which is mixed into clasarray.

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

class does what it does best, accessing array elementsgdhe application code to
concentrate on its particular requirement (in this casdijritpan entry that meets some
mathematical criteria).

Some iterators are common to many types of Ruby collectiesve looked atfind
already. Two others areach andcollect. each is probably the simplest iterator—all
it does is yield successive elements of its collection.

[1, 3,5, 7, 9 J.each {|i| puts i }

produces:
1

3
5
7
9

Theeach iterator has a special place in Ruby; on p&geave’ll describe how it's used
as the basis of the languagése loop, and starting on pagel 3we’ll see how defining
aneach method can add a whole lot more functionality to your clasgrize.

Another common iterator isollect, which takes each element from the collection
and passes it to the block. The results returned by the blecksed to construct a new
array. For instance:

["H", "A", "L"].collect {|x| x.succ } — ["I", "B", "M"]

Iterators are not limited to accessing existing data inyaremd hashes. As we saw in
the Fibonacci example, an iterator can return derived wallleis capability is used by
Ruby input/output classes, which implement an iterat@rface that returns successive
lines (or bytes) in an 1/O stream. (This example udes .end to define a block. The
only difference between this notation and using braces fioelblocks is precedence:
do...end binds lower than {...}. We discuss the impact of this on pagé.)

f = File.open("testfile")

f.each do |line]

puts line

end
f.close

produces:

This is line one
This is line two
This is line three
And so on...

Let’s look at just one more useful iterator. The (somewhatcobely namedjnject
method(defined in the modul@numerable) lets you accumulate a value across the

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

members of a collection. For example, you can sum all the eisnin an array, and
find their product, using code such as
[1,3,5,7].inject(0) {|sum, element| sum+element} — 16
[1,3,5,7].inject(1l) {|product, element| productxelement} — 105
inject works like this: the first time the associated block is callegh is set to
inject’s parameter andlement is set to the first elementin the collection. The second
and subsequent times the block is calledh is set to the value returned by the block
on the previous call. The final value dhject is the value returned by the block the
last time it was called. There’s one final wrinkleitfject is called with no parameter,
it uses the first element of the collection as the initial esdind starts the iteration with
the second value. This means that we could have written thequrs examples as

[1,3,5,7].inject {|sum, element| sum+element} — 16
[1,3,5,7].inject {|product, element| productxelement} — 105

Internal and External Iterators

It's worth spending a paragraph comparing Ruby’s approadetators to that of lan-
guages such as C++ and Java. In the Ruby approach, the iiteyatdernal to the
collection—it’s simply a method, identical to any otheratthappens to calfield
whenever it generates a new value. The thing that uses ttaoitas just a block of
code associated with this method.

In other languages, collections don’t contain their owrsiters. Instead, they generate
external helper objects (for example, those based on Javaisator interface) that
carry the iterator state. In this, as in many other ways, Rsilaytransparent language.
When you write a Ruby program, you concentrate on gettingidbedone, not on
building scaffolding to support the language itself.

It's probably also worth spending a paragraph looking at WRupy’s internal itera-
tors aren’t always the best solution. One area where thegidain badly is where you
need to treat an iterator as an object in its own right (fomgxe, passing the iter-
ator into a method that needs to access each of the valuesedthy that iterator).
It's also difficult to iterate over two collections in parlllusing Ruby’s internal iter-
ator scheme. Fortunately, Ruby 8mes with theGenerator library (described on
page662), which implements external iterators in Ruby for just sochasions.

Blocks for Transactions

Although blocks are often the target of an iterator, thep &ksve other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be rurr sodee kind of trans-
actional control. For example, you'll often open a file, donsthing with its contents,
and then want to ensure that the file is closed when you finishoAgh you can do this

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

using conventional code, an argument exists for making kaegsponsible for closing
itself. We can do this with blocks. A naive implementatiogn@ring error handling)
could look something like the following.

class File

def File.open_and_process(*args)
f = File.open(*args)
yield f
f.close()

end

end

File.open_and_process("testfile", "r") do |file]|

while line = file.gets
puts line
end

end

produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is aclass methoe-it may be called independently of any particu-
lar file object. We want it to take the same arguments as theectionalFile. open
method, but we don't really care what those arguments areddlthis, we speci-
fied the arguments asargs, meaning “collect the actual parameters passed to the
method into an array nameatgs.” We then callFile.open, passing itxargs as

a parameter. This expands the array back into individuaraters. The net result

is that open_and_process transparently passes whatever parameters it received to
File.open.

Once the file has been openeden_and_process callsyield, passing the open file
object to the block. When the block returns, the file is closethis way, the responsi-
bility for closing an open file has been passed from the uséleobbjects back to the
files themselves.

The technique of having files manage their own life cycle isuseful that the class
File supplied with Ruby supports it directly. Hile.open has an associated block,
then that block will be invoked with a file object, and the fildlvbe closed when
the block terminates. This is interesting, as it meanskhaé . open has two different
behaviors: when called with a block, it executes the bloak elnses the file. When
called without a block, it returns the file object. This is ragubssible by the method
Kernel.block_given?, which returnstrue if a block is associated with the current
method. Using this method, you could implement somethinglai to the standard
File.open (again, ignoring error handling) using the following.

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

class File
def File.my_open(+args)
result = file = File.new(*args)
# If there's a block, pass in the file and close
# the file when it returns
if block_given?
result = yield file
file.close
end

return result
end
end

This has one last twist: in the previous examples of usingkddo control resources,
we haven'’t addressed error handling. If we wanted to imptertteese methods prop-
erly, we'd need to ensure that we closed files even if the coglegssing that file some-
how aborted. We do this using exception handling, which Weabout later (starting
on pagel0l).

Blocks Can Be Closures

Let's get back to our jukebox for a moment (remember the jok&p. At some point
we’'ll be working on the code that handles the user interfatteebuttons that people
press to select songs and control the jukebox. We’'ll needssoaate actions with
those buttons: pre and the music starts. It turns out that Ruby’s blocks are
a convenient way to do this. Let’s start by assuming that #epfe who made the
hardware implemented a Ruby extension that gives us a ba#iinbclass. (We talk
about extending Ruby beginning on paf#l.)

start_button = Button.new("Start")
pause_button = Button.new("Pause")
# ...

What happens when the user presses one of our buttons?Hatthen class, the hard-
ware folks rigged things so that a callback methad;ton_pressed, will be invoked.
The obvious way of adding functionality to these buttonsoiteate subclasses of
Button and have each subclass implement its @wtton_pressed method.

class StartButton < Button
def initialize
super("Start") # invoke Button's initialize
end
def button_pressed
# do start actionms...
end
end

start_button = StartButton.new

Prepared exclusively for a Pragmatic Client




BLOCKS AND ITERATORS

This has two problems. First, this will lead to a large numbksubclasses. If the
interface toButton changes, this could involve us in a lot of maintenance. Seidbe
actions performed when a button is pressed are expresdseel &@taong level; they are
not a feature of the button but are a feature of the jukebaxubes the buttons. We can
fix both of these problems using blocks.

songlist = Songlist.new
class JukeboxButton < Button
def initialize(label, &action)

super (label)
@action = action
end

def button_pressed
@action.call(self)
end

end

start_button = JukeboxButton.new("Start") { songlist.start }
pause_button = JukeboxButton.new("Pause") { songlist.pause }

The key to all this is the second parameteliReboxButton#initialize. If the last
parameter in a method definition is prefixed with an amperg¢anch astaction),
Ruby looks for a code block whenever that method is calle@t Tode block is con-
verted to an object of clasgroc and assigned to the parameter. You can then treat
the parameter as any other variable. In our example, weressii to the instance
variable@action. When the callback methdditton_pressed is invoked, we use the
Proc#call method on that object to invoke the block.

So what exactly do we have when we creabeac object? The interesting thing is that
it's more than just a chunk of code. Associated with a blocid(aence @roc object)

is all the context in which the block watefined the value ofself and the methods,
variables, and constants in scope. Part of the magic of Rauthat the block can still
use all this original scope information even if the envir@mnin which it was defined
would otherwise have disappeared. In other languagedattilgy is called aclosure

Let’s look at a contrived example. This example uses the atcthmbda, which con-
verts a block to @roc object.

def n_times(thing)
return lambda {|n| thing * n }
end

pl = n_times(23)

pl.call(3) — 69

pl.call(4) — 92

p2 = n_times("Hello ")

p2.call(3) — "Hello Hello Hello "

Prepared exclusively for a Pragmatic Client




CONTAINERS EVERYWHERE

The methodn_times returns aProc object that references the method’s parameter,
thing. Even though that parameter is out of scope by the time thekhdocalled, the
parameter remains accessible to the block.

Containers Everywhere

Containers, blocks, and iterators are core concepts in Ry more you write in
Ruby, the more you'll find yourself moving away from convemial looping constructs.
Instead, you'll write classes that support iteration ot contents. And you'll find
that this code is compact, easy to read, and a joy to maintain.

Prepared exclusively for a Pragmatic Client




