


Extracted from:

Programming Ruby 1.9
The Pragmatic Programmers’ Guide

This PDF file contains pages extracted from Programming Ruby 1.9, published by the Pragmatic Bookshelf. For more

information or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in online versions of

the books. The printed versions are black and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com


Programming Ruby 1.9
The Pragmatic Programmers’ Guide

Dave Thomas

with Chad Fowler

Andy Hunt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware of a trademark claim,

the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic

Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic

Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors

or omissions, or for damages that may result from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have more

fun. For more information, as well as the latest Pragmatic titles, please visit us at http://www.pragprog.com.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-08-5

ISBN-13: 978-1-934356-08-1

Printed on acid-free paper.

3.0 printing, November 2010

Version: 2010-11-5

http://www.pragprog.com


Chapter 16

Namespaces, Source Files, and Distribution
As your programs grow (and they all seem to grow over time), you’ll find that you’ll need to start

organizing your code—simply putting everything into a single huge file becomes unworkable

(and makes it hard to reuse chunks of code in other projects). So, we need to find a way to split

our project into multiple files and then to knit those files together as our program runs.

There are two major aspects to this organization. The first is internal to your code: how do you

prevent different things with the same name from clashing? The second area is related: how do

you conveniently organize the source files in your project?

16.1 Namespaces

We’ve already encountered a way that Ruby helps you manage the names of things in your

programs. If you define methods or constants in a class, Ruby ensures that their names can be

used only in the context of that class (or its objects, in the case of instance methods):

class Triangle

SIDES = 3

def area

# ..

end

end

class Square

SIDES = 4

def initialize(side_length)

@side_length = side_length

end

def area

@side_length * @side_length

end

end

puts "A triangle has #{Triangle::SIDES} sides"

sq = Square.new(3)

puts "Area of square = #{sq.area}"



ORGANIZING YOUR SOURCE 240

produces:

A triangle has 3 sides

Area of square = 9

Both classes define a constant called SIDES and an instance method area, but these things don’t

get confused. You access the instance method via objects created from the class, and you access

the constant by prefixing it with the name of the class followed by a double colon. The double

colon (::) is Ruby’s namespace resolution operator. The thing to the left must be a class or

module, and the thing to the right is a constant defined in that class or module.1

So, putting code inside a module or class is a good way of separating it from other code. Ruby’s

Math module is a good example—it defines constants such as Math::PI and Math::E and methods

such as Math.sin and Math.cos. You can access these constants and methods via the Math module

object:

Math::E # => 2.718281828459045

Math.sin(Math::PI/6.0) # => 0.49999999999999994

(Modules have another, significant use—they implement Ruby’s mixin functionality, which we

discussed on page 94.)

Ruby has an interesting little secret. The names of classes and modules are themselves just con-

stants.2 And that means that if you define classes or modules inside other classes and modules,

the names of those inner classes follow the same namespacing rules as other constants:

module Formatters

class Html

# ...

end

class Pdf

# ...

end

end

html_writer = Formatters::Html.new

You can nest classes and modules inside other classes and modules to any depth you want

(although it’s rare to see them more than three deep).

So, now we know that we can use classes and modules to partition the names used by our

programs. The second question to answer is, what do we do with the source code?

16.2 Organizing Your Source

This section covers two related issues: how do we split our source code into separate files, and

where in the file system do we put those files?

1. The thing to the right of the :: can also be a class or module method, but this use is falling out of favor—using a

period makes it clearer that it’s just a regular old method call.

2. Remember that we said that most everything in Ruby is an object. Well, classes and modules are, too. The name that

you use for a class, such as String, is really just a Ruby constant containing the object representing that class.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 241

Some languages, such as Java, make this easy. They dictate that each outer-level class should be

in its own file and that file should be named according to the name of the class. Other languages,

such as Ruby, have no rules relating source files and their content. In Ruby, you’re free to

organize your code as you like.

But, in the real world, you’ll find that some kind of consistency really helps. It will make it easier

for you to navigate your own projects, and it will also help when you read (or incorporate) other

people’s code.

So, the Ruby community is gradually adopting a kind of de facto standard. In many ways, it

follows the spirit of the Java model, but without some of the inconveniences suffered by our

Java brethren. Let’s start with the basics.

Small Programs

Small, self-contained scripts can be in a single file. However, if you do this, you won’t easily be

able to write automated tests for your program, because the test code won’t be able to load the

file containing your source without the program itself running. So, if you want to write a small

program that also has automated tests, split that program into a trivial driver that provides the

external interface (the command-line part of the code) and one or more files containing the rest.

Your tests can then exercise these separate files without actually running the main body of your

program.

Let’s try this for real. Here’s a simple program that finds anagrams in a dictionary. Feed it one

or more words, and it gives you the anagrams of each. Here’s an example:

$ ruby anagram.rb teaching code

Anagrams of teaching: cheating, teaching

Anagrams of code: code, coed

If we were typing in this program for casual use, we might just enter it into a single file (perhaps

anagram.rb). It would look something like this:

Download packaging/anagram.rb

#!/usr/bin/env ruby

require 'optparse'

dictionary = "/usr/share/dict/words"

OptionParser.new do |opts|

opts.banner = "Usage: anagram [ options ] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|

dictionary = dict

end

opts.on("-h", "--help", "Show this message") do

puts opts

exit

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram.rb
http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 242

begin

ARGV << "-h" if ARGV.empty?

opts.parse!(ARGV)

rescue OptionParser::ParseError => e

STDERR.puts e.message, "\n", opts

exit(-1)

end

end

# convert "wombat" into "abmotw". All anagrams share a signature

def signature_of(word)

word.unpack("c*").sort.pack("c*")
end

signatures = Hash.new

File.foreach(dictionary) do |line|

word = line.chomp

signature = signature_of(word)

(signatures[signature] ||= []) << word

end

ARGV.each do |word|

signature = signature_of(word)

if signatures[signature]

puts "Anagrams of #{word}: #{signatures[signature].join(', ')}"
else

puts "No anagrams of #{word} in #{dictionary}"
end

end

Then someone asks us for a copy, and we start to feel embarrassed. It has no tests, and it isn’t

particularly well packaged.

Looking at the code, there are clearly three sections. The first twenty-five or so lines do option

parsing, the next ten or so lines read and convert the dictionary, and the last few lines look up

each command-line argument and report the result. Let’s split our file into four parts:

• An option parser

• A class to hold the lookup table for anagrams

• A class that looks up words given on the command line

• A trivial command-line interface

The first three of these are effectively library files, used by the fourth.

Where do we put all these files? The answer is driven by some strong Ruby conventions, first

seen in Minero Aoki’s setup.rb and later enshrined in the RubyGems system. We’ll create a

directory for our project containing (for now) three subdirectories:

anagram/ <- top-level

bin/ <- command-line interface goes here

lib/ <- three library files go here

test/ <- test files go here

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 243

Now let’s look at the library files. We know we’re going to be defining (at least) three classes.

Right now, these classes will be used only inside our command-line program, but it’s conceiv-

able that other people might want to include one or more of our libraries in their own code. This

means that we should be polite and not pollute the top-level Ruby namespace with the names

of all our classes and so on. We’ll create just one top-level module, Anagram, and then place all

our classes inside this module. This means that the full name of (say) our options-parsing class

will be Anagram::Options.

This choice informs our decision on where to put the corresponding source files. Because class

Options is inside the module Anagram, it makes sense to put the corresponding file, options.rb,

inside a directory named anagram/ in the lib/ directory. This helps people who read your code

in the future; when they see a name like A::B::C, they know to look for c.rb in the b/ directory in

the a/ directory of your library. So, we can now flesh out our directory structure with some files:

anagram/

bin/

anagram <- command-line interface

lib/

anagram/

finder.rb

options.rb

runner.rb

test/

... various test files

Let’s start with the option parser. Its job is to take an array of command-line options and return

to us the path to the dictionary file and the list of words to look up as anagrams. The source, in

lib/anagram/options.rb, looks like this:

Download packaging/anagram/lib/anagram/options.rb

require 'optparse'

module Anagram

class Options

DEFAULT_DICTIONARY = "/usr/share/dict/words"

attr_reader :dictionary

attr_reader :words_to_find

def initialize(argv)

@dictionary = DEFAULT_DICTIONARY

parse(argv)

@words_to_find = argv

end

private

def parse(argv)

OptionParser.new do |opts|

opts.banner = "Usage: anagram [ options ] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/lib/anagram/options.rb
http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 244

@dictionary = dict

end

opts.on("-h", "--help", "Show this message") do

puts opts

exit

end

begin

argv = ["-h"] if argv.empty?

opts.parse!(argv)

rescue OptionParser::ParseError => e

STDERR.puts e.message, "\n", opts

exit(-1)

end

end

end

end

end

Notice how we define the Options class inside a top-level Anagram module.

Let’s write some unit tests for this code. This should be relatively easy, because options.rb is

self-contained—the only external dependency is to the standard Ruby OptionParser. We’ll use

the standard Ruby Test::Unit framework, extended using the Shoulda gem.3 We’ll put the source

of this test in the file test/test_options.rb:

Download packaging/anagram/test/test_options.rb

require 'test/unit'
require 'shoulda'
require_relative '../lib/anagram/options'

class TestOptions < Test::Unit::TestCase

context "specifying no dictionary" do

should "return default" do

opts = Anagram::Options.new(["someword"])
assert_equal Anagram::Options::DEFAULT_DICTIONARY, opts.dictionary

end

end

context "specifying a dictionary" do

should "return it" do

opts = Anagram::Options.new(["-d", "mydict", "someword"])
assert_equal "mydict", opts.dictionary

end

end

context "specifying words and no dictionary" do

should "return the words" do

opts = Anagram::Options.new(["word1", "word2"])
assert_equal ["word1", "word2"], opts.words_to_find

end

end

3. We talk about Shoulda starting on page 200.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/test/test_options.rb
http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 245

context "specifying words and a dictionary" do

should "return the words" do

opts = Anagram::Options.new(["-d", "mydict", "word1", "word2"])
assert_equal ["word1", "word2"], opts.words_to_find

end

end

end

The line to note in this file is as follows:

require_relative '../lib/anagram/options'

This is where we load in the source of the Options class we just wrote. We use the new Ruby 1.9 1.9

feature, require_relative. This is like regular old require, but it always loads from a path relative

to the directory of the file that invokes it.

$ ruby test/test_options.rb

Loaded suite test/test_options

Started

....

Finished in 0.001342 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

The finder code (in lib/anagram/finder.rb) is modified slightly from the original version. To make

it easier to test, we’ll have the default constructor take a list of words, rather than a filename.

We’ll then provide an additional factory method, from_file, that takes a filename and constructs

a new Finder from that file’s contents:

Download packaging/anagram/lib/anagram/finder.rb

module Anagram

class Finder

def self.from_file(file_name)

new(File.readlines(file_name))

end

def initialize(dictionary_words)

@signatures = Hash.new

dictionary_words.each do |line|

word = line.chomp

signature = Finder.signature_of(word)

(@signatures[signature] ||= []) << word

end

end

def lookup(word)

signature = Finder.signature_of(word)

@signatures[signature]

end

def self.signature_of(word)

word.unpack("c*").sort.pack("c*")
end

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/lib/anagram/finder.rb
http://www.pragprog.com/titles/ruby3


ORGANIZING YOUR SOURCE 246

Again, we embed the Finder class inside the top-level Anagram module. And, again, this code

is self-contained, allowing us to write some simple unit tests:

Download packaging/anagram/test/test_finder.rb

require 'test/unit'
require 'shoulda'
require_relative '../lib/anagram/finder'

class TestFinder < Test::Unit::TestCase

context "signature" do

{ "cat" => "act", "act" => "act", "wombat" => "abmotw" }.each do

|word, signature|

should "be #{signature} for #{word}" do

assert_equal signature, Anagram::Finder.signature_of(word)

end

end

end

context "lookup" do

setup do

@finder = Anagram::Finder.new(["cat", "wombat"])
end

should "return word if word given" do

assert_equal ["cat"], @finder.lookup("cat")
end

should "return word if anagram given" do

assert_equal ["cat"], @finder.lookup("act")
assert_equal ["cat"], @finder.lookup("tca")

end

should "return nil if no word matches anagram" do

assert_nil @finder.lookup("wibble")
end

end

end

These go in lib/test_finder.rb:

$ ruby test/test_finder.rb

Loaded suite test/test_finder

Started

......

Finished in 0.000916 seconds.

6 tests, 7 assertions, 0 failures, 0 errors, 0 skips

So, now we have all the support code in place. We just need to run it. We’ll make the command-

line interface—the thing the end user actually executes—really thin. It’s in the bin/ directory in

a file called anagram (no .rb extension, because that would be unusual in a command).4

4. If you’re on Windows, you might want to wrap the invocation of this in a .cmd file.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/test/test_finder.rb
http://www.pragprog.com/titles/ruby3


DISTRIBUTING AND INSTALLING YOUR CODE 247

Download packaging/anagram/bin/anagram

#! /usr/local/rubybook/bin/ruby

require 'anagram/runner'

runner = Anagram::Runner.new(ARGV)

runner.run

The code that this script invokes (lib/anagram/runner.rb) knits our other libraries together:

Download packaging/anagram/lib/anagram/runner.rb

require_relative 'finder'
require_relative 'options'

module Anagram

class Runner

def initialize(argv)

@options = Options.new(argv)

end

def run

finder = Finder.from_file(@options.dictionary)

@options.words_to_find.each do |word|

anagrams = finder.lookup(word)

if anagrams

puts "Anagrams of #{word}: #{anagrams.join(', ')}"
else

puts "No anagrams of #{word} in #{@options.dictionary}"
end

end

end

end

end

In this case, the two libraries finder and options are in the same directory as the runner, so

require_relative finds them perfectly.

Now that all our files are in place, we can run our program from the command line:

$ ruby -I lib bin/anagram teaching code

Anagrams of teaching: cheating, teaching

Anagrams of code: code, coed

There’s nothing like a cheating coed teaching code.

16.3 Distributing and Installing Your Code

Now that we have our code a little tidier, it would be nice to be able to distribute it to others. We

could just zip or tar it up and send them our files, but then they’d have to run the code the way

we do, remembering to add the correct -I lib options and so on. They’d also have some problems

if they wanted to reuse one of our library files—it would be sitting in some random directory on

their hard drive, not in a standard location used by Ruby.

So, we’re really looking for a way to take our little application and install it in a standard way.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/bin/anagram
http://media.pragprog.com/titles/ruby3/code/packaging/anagram/lib/anagram/runner.rb
http://www.pragprog.com/titles/ruby3


DISTRIBUTING AND INSTALLING YOUR CODE 248

Now, Ruby already has a standard installation structure on your computer. When Ruby is

installed, it puts its commands (ruby, ri, irb, and so on) into a directory of binary files. It puts its

libraries into another directory tree and documentation somewhere else. So, one option would

be to write an installation script that you distribute with your code that copies components of

your application to the appropriate directories on the system that’s installing it.

Being a Good Packaging Citizen

So, I’ve ignored some stuff that you’d want to do before distributing your code to the world.

Your distributed directory tree really should have a README file, outlining what it does and

probably containing a copyright statement; an INSTALL file, giving installation instructions; and

a LICENSE file, giving the license it is distributed under.

You’ll probably want to distribute some documentation, too. This would go in a directory called

doc/, parallel with the bin and lib directories.

You might also want to distribute native C-language extensions with your library. These exten-

sions would go into your project’s ext/ directory.

Using RubyGems

The RubyGems package management system (which is also just called Gems) has become the

standard for distributing and managing Ruby code packages. As of Ruby 1.9, it comes bundled 1.9

with Ruby itself.5

RubyGems is also a great way to package your own code. If you want to make your code avail-

able to the world, RubyGems is the way to go. Even if you’re just sending code to a few friends

or within your company, RubyGems gives you dependency and installation management—one

day you’ll be grateful for that.

RubyGems needs to know information about your project that isn’t contained in the directory

structure. Instead, you have to write a short RubyGems specification: a GemSpec. Create this

in a separate file named project-name.gemspec in the top-level directory of your application (in

our case, the file is anagram.gemspec):

Download packaging/anagram/anagram.gemspec

Gem::Specification.new do |s|

s.name = "anagram"
s.summary = "Find anagrams of words supplied on the command line"
s.description = File.read(File.join(File.dirname(__FILE__), 'README'))
s.requirements =

[ 'An installed dictionary (most Unix systems have one)' ]

s.version = "0.0.1"
s.author = "Dave Thomas"
s.email = "dave@pragprog.com"
s.homepage = "http://pragdave.pragprog.com"
s.platform = Gem::Platform::RUBY

5. Prior to RubyGems, folks often distibuted a tool called setup.rb with their libraries. This would install the library

into the standard Ruby directory structure on a user’s machine.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/packaging/anagram/anagram.gemspec
http://www.pragprog.com/titles/ruby3


DISTRIBUTING AND INSTALLING YOUR CODE 249

s.required_ruby_version = '>=1.9'
s.files = Dir['**/**']
s.executables = [ 'anagram' ]

s.test_files = Dir["test/test*.rb"]
s.has_rdoc = false

end

The first line of the spec gives our gem a name. This is important—it will be used as part of

the package name, and it will appear as the name of the gem when installed. Although it can

be mixed case, we find that confusing, so do our poor brains a favor and use lowercase for gem

names.

The version string is significant, because RubyGems will use it both for package naming and

for dependency management. Stick to the x.y.z format.6

The platform field tells RubyGems that (in this case) our gem is pure Ruby code. It’s also

possible to package (for example) Windows .exe files inside a gem, in which case you’d use

Gem::Platform::Win32.

The next line is also important (and oft-forgotten by package developers). Because we use

require_relative, our gem will run only with Ruby 1.9 and newer.

We then tell RubyGems which files to include when creating the gem package. Here we’ve been

lazy and included everything. You can be more specific.

The s.executables line tells RubyGems to install the anagram command-line script when the

gem gets installed on a user’s machine.

To save space, we haven’t added RDoc documentation comments to our source files (RDoc

is described in Chapter 19, Documenting Ruby, on page 276). The last line of the spec tells

RubyGems not to try to extract documentation when the gem is installed.

Obviously I’ve skipped a lot of details here. A full description of GemSpecs is available online,7

along with other documents on RubyGems.8

Packaging Your RubyGem

Once the gem specification is complete, you’ll want to create the packaged .gem file for distri-

bution. This is as easy as navigating to the top level of your project and typing this:

$ gem build anagram.gemspec

WARNING: no rubyforge_project specified

Successfully built RubyGem

Name: anagram

Version: 0.0.1

File: anagram-0.0.1.gem

You’ll find you now have a file called anagram-0.0.1.gem.

6. And read http://www.rubygems.org/read/chapter/7 for information on what the numbers mean.

7. http://www.rubygems.org/read/book/4

8. http://www.rubygems.org/

CLICK HERE to purchase this book now.

http://www.rubygems.org/read/chapter/7
http://www.rubygems.org/read/book/4
http://www.rubygems.org/
http://www.pragprog.com/titles/ruby3


DISTRIBUTING AND INSTALLING YOUR CODE 250

$ ls *gem

anagram-0.0.1.gem

You can install it:

$ sudo gem install pkg/anagram-0.0.1.gem

Successfully installed anagram-0.0.1

1 gem installed

And check to see that it is there:

$ gem list anagram -d

*** LOCAL GEMS ***
anagram (0.0.1)

Author: Dave Thomas

Homepage: http://pragdave.pragprog.com

Installed at: /usr/local/lib/ruby/gems/1.9.0

Find anagrams of words supplied on the command line

Now you can send your .gem file to friends and colleagues or share it from a server. Or, you

could go one better and share it from a RubyGems server.

If you have RubyGems installed on your local box, you can share them over the network to

others. Simply run this:

$ gem server

Server started at http://[::ffff:0.0.0.0]:8808

Server started at http://0.0.0.0:8808

This starts a server (by default on port 8808, but the --port option overrides that). Other people

can connect to your server to list and retrieve RubyGems:

$ gem list --remote --source http://dave.local:8808

*** REMOTE GEMS ***

anagram (0.0.1)

builder (2.1.2, 0.1.1)

..

This is particularly useful in a corporate environment.

You can speed up the serving of gems by creating a static index—see the help for gem gener-

ate_index for details.

Serving Public RubyGems

RubyGems.org (http://rubygems.org) has become the main repository for public Ruby libraries

and projects. And, if you create a RubyGems.org account, you can push your .gem file to their

public servers.

$ gem push anagram-0.0.1.gem

Enter your RubyGems.org credentials.

Don't have an account yet? Create one at http://rubygems.org/sign_up

Email: dave@pragprog.com

CLICK HERE to purchase this book now.

http://rubygems.org
http://www.pragprog.com/titles/ruby3


DISTRIBUTING AND INSTALLING YOUR CODE 251

Password:

Signed in.

Pushing gem to RubyGems.org...

Successfully registered gem: anagram (0.0.1)

And, at that point, any Ruby user in the world can do this:

$ gem search -r anagram

*** REMOTE GEMS ***

anagram (0.0.1)

..

and, even better, can do this:

$ gem install anagram

Adding Even More Automation

The Jewler library9 can create a new project skeleton that follows the layout guidelines in this

chapter. It also provides a set of Rake tasks that will help create and manage your project as a

gem.

If you’re a Rails user, you’ll have come across bundler, a utility that manages the gems used by

your application. Bundler is more general than this: it can be used to manage the gems used by

any piece of Ruby code.

Some folks like the extra features of these utilities, while others prefer the leaner “roll-your-

own” approach. Whatever route you take, taking the time to package your applications and

libraries will pay you back many times over.

See You on GitHub

Finally, if you’re developing a Ruby application or library that you’ll be sharing, you’ll probably

want to store it on GitHub.10 Although it started as a public Git repository, GitHib is now a

community in its own right. It’s a home away from home for many in the Ruby community.

9. http://github.com/technicalpickles/jeweler

10. http://github.com

CLICK HERE to purchase this book now.

http://github.com/technicalpickles/jeweler
http://github.com
http://www.pragprog.com/titles/ruby3

