

Extracted from:

Programming Ruby 1.9
The Pragmatic Programmers’ Guide

This PDF file contains pages extracted from Programming Ruby 1.9, published by the Pragmatic Bookshelf. For more

information or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in online versions of

the books. The printed versions are black and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Programming Ruby 1.9
The Pragmatic Programmers’ Guide

Dave Thomas

with Chad Fowler

Andy Hunt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware of a trademark claim,

the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic

Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic

Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors

or omissions, or for damages that may result from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have more

fun. For more information, as well as the latest Pragmatic titles, please visit us at http://www.pragprog.com.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-08-5

ISBN-13: 978-1-934356-08-1

Printed on acid-free paper.

3.0 printing, November 2010

Version: 2010-11-5

http://www.pragprog.com

Chapter 7

Regular Expressions
We probably spend most of our time in Ruby working with strings, so it seems reasonable

for Ruby to have some great tools for working with those strings. As we’ve seen, the String

class itself is no slouch—it has more than 100 methods. But there are still things that the basic

String class can’t do. For example, we might want to see whether a string contains two or more

repeated characters, or we might want to replace every word longer than fifteen characters with

its first five characters and an ellipsis. This is when we turn to the power of regular expressions.

Now, before we get too far in, here’s a warning: there have been whole books written on regular

expressions.1 There is complexity and subtlety here that rivals that of the rest of Ruby. So

if you’ve never used regular expressions, don’t expect to read through this whole chapter the

first time. In fact, you’ll find two emergency exits in what follows. If you’re new to regular

expressions, I strongly suggest you read through to the first and then bail out. When some

regular expression question next comes up, come back here and maybe read through to the next

exit. Then, later, when you’re feeling comfortable with regular expressions, you can give the

whole chapter a read.

7.1 What Regular Expressions Let You Do

A regular expression is a pattern that can be matched against a string. It can be a simple pattern,

such as the string must contain the sequence of letters “cat”, or the pattern can be complex,

such as the string must start with a protocol identifier, followed by two literal forward slashes,

followed by..., and so on. This is cool in theory. But what makes regular expressions so powerful

is what you can do with them in practice:

• You can test a string to see whether it matches a pattern.

• You can extract from a string the sections that match all or part of a pattern.

• You can change the string, replacing parts that match a pattern.

Ruby provides built-in support that makes pattern matching and substitution convenient and

concise. In this section, we’ll work through the basics of regular expression patterns and see

1. Such as Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools [Fri97]

RUBY’S REGULAR EXPRESSIONS 113

how Ruby supports matching and replacing based on those patterns. In the sections that follow,

we’ll dig deeper into both the patterns and Ruby’s support for them.

7.2 Ruby’s Regular Expressions

There are many ways of creating a regular expression pattern. By far the most common is to

write it between forward slashes. Thus, the pattern /cat/ is a regular expression literal in the

same way that "cat" is a string literal.

/cat/ is an example of a simple, but very common, pattern. It matches any string that contains

the substring cat. In fact, inside a pattern, all characters except ., |, (,), [,], {, }, +, \, ^, $, *, and

? match themselves. So, at the risk of creating something that sounds like a logic puzzle, here

are some patterns and examples of strings they match and don’t match:

/cat/ Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."

/123/ Matches "86512312" and "abc123" but not "1.23"

/t a b/ Matches "hit a ball" but not "table"

If you want to match one of the special characters literally in a pattern, precede it with a back-

slash, so /*/ is a pattern that matches a single asterisk, and /\/ /} is a pattern that matches a

forward slash.

Pattern literals are like double-quoted strings. In particular, you can use #{...} expression substi-

tutions in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the character offset into the

string at which the match occurred:

/cat/ =~ "dog and cat" # => 8

/cat/ =~ "catch" # => 0

/cat/ =~ "Cat" # => nil

You can put the string first if you prefer:2

"dog and cat" =~ /cat/ # => 8

"catch" =~ /cat/ # => 0

"Cat" =~ /cat/ # => nil

Because pattern matching returns nil when it fails and because nil is equivalent to false in a

boolean context, you can use the result of a pattern match as a condition in statements such as if

and while.

str = "cat and dog"

if str =~ /cat/

puts "There's a cat here somewhere"
end

2. Some folks say this is inefficient, because the string will end up calling the regular expression code to do the match.

These folks are correct in theory but wrong in practice.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

RUBY’S REGULAR EXPRESSIONS 114

produces:

There's a cat here somewhere

The following code prints lines in testfile that have the string on in them:

File.foreach("testfile").with_index do |line, index|

puts "#{index}: #{line}" if line =~ /on/

end

produces:

0: This is line one

3: And so on...

You can test to see whether a pattern does not match a string using !~:

File.foreach("testfile").with_index do |line, index|

puts "#{index}: #{line}" if line !~ /on/

end

produces:

1: This is line two

2: This is line three

Changing Strings with Patterns

The sub method takes a pattern and some replacement text.3 If it finds a match for the pattern

in the string, it replaces the matched substring with the replacement text.

str = "Dog and Cat"
new_str = str.sub(/Cat/, "Gerbil")
puts "Let's go to the #{new_str} for a pint."

produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all matches, use gsub. (The g

stands for global.)

str = "Dog and Cat"
new_str1 = str.sub(/a/, "*")
new_str2 = str.gsub(/a/, "*")
puts "Using sub: #{new_str1}"
puts "Using gsub: #{new_str2}"

produces:

Using sub: Dog *nd Cat

Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that new string will just be

a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms:

str = "now is the time"
str.sub!(/i/, "*")
str.gsub!(/t/, "T")
puts str

3. Actually, it does more than that, but we won’t get to that for a while.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 115

Playing with Regular Expressions

If you’re like us, you’ll sometimes get confused by regular expressions. You
create something that should work, but it just doesn’t seem to match. That’s
when we fall back to irb. We’ll cut and paste the regular expression into irb
and then try to match it against strings. We’ll slowly remove portions until we
get it to match the target string and add stuff back until it fails. At that point,
we’ll know what we were doing wrong.

produces:

now *s The Time

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was matched. If no

match for the pattern is found in the string, they return nil instead. This means it can make sense

(depending on your need) to use the ! forms in conditions.

So, at this point you know how to use patterns to look for text in a string and how to substitute

different text for those matches. And, for many people, that’s enough. So if you’re itching to get

on to other Ruby topics, now is a good time to move on to the next chapter. At some point, you’ll

likely need to do something more complex with regular expressions (for example, matching a

time by looking for two digits, a colon, and two more digits). You can then come back and read

the next section.

Or, you can just stay right here as we dig deeper into patterns, matches, and replacements.

7.3 Digging Deeper

Like most things in Ruby, regular expressions are just objects—they are instances of the class

Regexp. This means you can assign them to variables, pass them to methods, and so on:

str = "dog and cat"
pattern = /nd/

pattern =~ str # => 5

str =~ pattern # => 5

You can also create regular expression objects by calling the Regexp class’s new method or by

using the %r{...} syntax. The %r syntax is particularly useful when creating patterns that contain

forward slashes:

/mm\/dd/ # => /mm\/dd/

Regexp.new("mm/dd") # => /mm\/dd/

%r{mm/dd} # => /mm\/dd/

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern matches

strings. If you’re using literals to create the Regexp object, then the options are one or more

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 116

characters placed immediately after the terminator. If you’re using Regexp.new, the options are

constants used as the second parameter of the constructor.

i Case insensitive. The pattern match will ignore the case of letters in the pattern and string.

(The old technique of setting $= to make matches case insensitive no longer works.)

o Substitute once. Any #{...} substitutions in a particular regular expression literal will be

performed just once, the first time it is evaluated. Otherwise, the substitutions will be per-

formed every time the literal generates a Regexp object.

m Multiline mode. Normally, “.” matches any character except a newline. With the /m option,

“.” matches any character.

x Extended mode. Complex regular expressions can be difficult to read. The x option allows

you to insert spaces and newlines in the pattern to make it more readable. You can also use

to introduce comments.

Another set of options allows you to set the language encoding of the regular expression. If none

of these options is specified, the regular expression will have US-ASCII encoding if it contains

only 7-bit characters. Otherwise, it will use the default encoding of the source file containing

the literal: n: no encoding (ASCII), e: EUC, s: SJIS, and u: UTF-8.

Matching Against Patterns

Once you have a regular expression object, you can match it against a string using the (Reg-

exp#match(string) method or the match operators =~ (positive match) and !~ (negative match).

The match operators are defined for both String and Regexp objects. One operand of the match

operator must be a regular expression.

name = "Fats Waller"
name =~ /a/ # => 1

name =~ /z/ # => nil

/a/ =~ name # => 1

/a/.match(name) # => #<MatchData "a">

Regexp.new("all").match(name) # => #<MatchData "all">

The match operators return the character position at which the match occurred, while the match

method returns a MatchData object. In all forms, if the match fails, nil is returned.

After a successful match, Ruby sets a whole bunch of magic variables. For example, $& receives

the part of the string that was matched by the pattern, $‘ receives the part of the string that

preceded the match, and $’ receives the string after the match. However, these particular vari-

ables are considered to be fairly ugly, so most Ruby programmers instead use the MatchData

object returned from the match method, because it encapsulates all the information Ruby knows

about the match. Given a MatchData object, you can call pre_match to return the part of the

string before the match, post_match for the string after the match, and index using [0] to get the

matched portion.

We can use these methods to write a method, show_regexp, that illustrates where a particular

pattern matches:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 117

Download tut_regexp/show_match.rb

def show_regexp(string, pattern)

match = pattern.match(string)

if match

"#{match.pre_match}->#{match[0]}<-#{match.post_match}"
else

"no match"
end

end

We could use this method like this:

show_regexp('very interesting', /t/) # => very in->t<-eresting

show_regexp('Fats Waller', /a/) # => F->a<-ts Waller

show_regexp('Fats Waller', /lle/) # => Fats Wa->lle<-r

show_regexp('Fats Waller', /z/) # => no match

Deeper Patterns

We said earlier that, within a pattern, all characters match themselves except ., |, (,), [,], {, },

+, \, ^, $, *, and ?. Let’s dig a bit deeper into this.

First, always remember that you need to escape any of these characters with a backslash if you

want them to be treated as regular characters to match:

show_regexp('yes | no', /\|/) # => yes ->|<- no

show_regexp('yes (no)', /\(no\)/) # => yes ->(no)<-

show_regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without escaping them.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string. Match

/iss/ against the string “Mississippi,” and it will find the substring “iss” starting at position 1 (the

second character in the string). But what if you want to force a pattern to match only at the start

or end of a string?

The patterns ^ and $ match the beginning and end of a line, respectively. These are often used to

anchor a pattern match; for example, /^option/ matches the word option only if it appears at the

start of a line. Similarly, the sequence \A matches the beginning of a string, and \z and \Z match

the end of a string. (Actually, \Z matches the end of a string unless the string ends with \n, in

which case it matches just before the \n.)

str = "this is\nthe time"
show_regexp(str, /^the/) # => this is\n->the<- time

show_regexp(str, /is$/) # => this ->is<-\nthe time

show_regexp(str, /\Athis/) # => ->this<- is\nthe time

show_regexp(str, /\Athe/) # => no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries, respectively.

Word characters are ASCII letters, numbers, and underscores:

show_regexp("this is\nthe time", /\bis/) # => this ->is<-\nthe time

show_regexp("this is\nthe time", /\Bis/) # => th->is<- is\nthe time

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/tut_regexp/show_match.rb
http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 118

Character Classes

A character class is a set of characters between brackets: [characters] matches any single char-

acter between the brackets, so [aeiou] matches a vowel, [,.:;!?] matches some punctuation, and

so on. The significance of the special regular expression characters—.|(){+^$*?—is turned off

inside the brackets. However, normal string substitution still occurs, so (for example) \b rep-

resents a backspace character, and \n represents a newline (see Figure 22.2, on page 313). In

addition, you can use the abbreviations shown in Figure 7.1, on the following page, so that \s

matches any whitespace character, not just a literal space:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.

show_regexp('Price $12.', /[\s]/) # => Price-> <-$12.

show_regexp('Price $12.', /[$.]/) # => Price ->$<-12.

Within the brackets, the sequence c1-c2 represents all the characters from c1 to c2 in the current

encoding:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[A-F]/) # => see [The Pick->A<-xe-page 123]

show_regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]

show_regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[0-9][0-9]/) # => see [The PickAxe-page ->12<-3]

You can negate a character class by putting an up arrow (^, sometimes called a caret) immedi-

ately after the opening bracket:

show_regexp('Price $12.', /[^A-Z]/) # => P->r<-ice $12.

show_regexp('Price $12.', /[^\w]/) # => Price-> <-$12.

show_regexp('Price $12.', /[a-z][^a-z]/) # => Pric->e <-$12.

The POSIX character classes, as shown in Figure 7.2, on page 130, correspond to the ctype(3)

macros of the same names. They can also be negated by putting an up arrow (or caret) after the

first colon:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.

show_regexp('Price $12.', /[[:digit:]]/) # => Price $->1<-2.

show_regexp('Price $12.', /[[:space:]]/) # => Price-> <-$12.

show_regexp('Price $12.', /[[:^alpha:]]/) # => Price-> <-$12.

show_regexp('Price $12.', /[[:punct:]aeiou]/) # => Pr->i<-ce $12.

If you want to include the literal characters] and - within a character class, escape them with \:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[\]]/) # => see [The PickAxe-page 123->]<-

show_regexp(a, /[0-9\]]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[\d\-]/) # => see [The PickAxe->-<-page 123]

Some character classes are used so frequently that Ruby provides abbreviations for them. These

abbreviations are listed in Figure 7.1, on the following page—they may be used both within

brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) # => It-> <-costs $12.

show_regexp('It costs $12.', /\d/) # => It costs $->1<-2.

CLICK HERE to purchase this book now.

http://www.freebsd.org/cgi/man.cgi?query=ctype&sektion=3
http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 119

Sequence As [...] Meaning

\d [0-9] ASCII decimal digit character

\D [^0-9] Any character except a digit

\h [0-9a-fA-F] Hexadecimal digit character

\H [^0-9a-fA-F] Any character except a hex digit

\s [\t\r\n\f] ASCII whitespace character

\S [^ \t\r\n\f] Any character except whitespace

\w [A-Za-z0-9_] ASCII word character

\W [^A-Za-z0-9_] Any character except a word character

Figure 7.1: Character class abbreviations

You can create the intersection of character classes using &&. So, to match all lowercase ASCII

letters that aren’t vowels, you could use this:

str = "now is the time"
str.gsub(/[a-z&&[^aeiou]]/, '*') # => "*o* i* **e *i*e"

The \p construct is new with Ruby 1.9. It gives you an encoding-aware way of matching a 1.9

character with a particular Unicode property (shown in Figure 7.3, on page 131):

encoding: utf-8

string = "∂y/∂x = 2πx"
show_regexp(string, /\p{Alnum}/) # => ∂->y<-/∂x = 2πx

show_regexp(string, /\p{Digit}/) # => ∂y/∂x = ->2<-πx

show_regexp(string, /\p{Space}/) # => ∂y/∂x-> <-= 2πx

show_regexp(string, /\p{Greek}/) # => ∂y/∂x = 2->π<-x

show_regexp(string, /\p{Graph}/) # => ->∂<-y/∂x = 2πx

Finally, a period (.) appearing outside brackets represents any character except a newline (though

in multiline mode it matches a newline, too):

a = 'It costs $12.'
show_regexp(a, /c.s/) # => It ->cos<-ts $12.

show_regexp(a, /./) # => ->I<-t costs $12.

show_regexp(a, /\./) # => It costs $12->.<-

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we wanted to match

a vertical bar surrounded by an arbitrary amount of whitespace. We now know that the \s

sequences match a single whitespace character and \| means a literal vertical bar, so it seems

likely that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is one of a

number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 120

r* Matches zero or more occurrences of r

r+ Matches one or more occurrences of r

r? Matches zero or one occurrence of r

r{m,n} Matches at least m and at most n occurrences of r

r{m,} Matches at least m occurrences of r

r{,n} Matches at most n occurrences of r

r{m} Matches exactly m occurrences of r

These repetition constructs have a high precedence—they bind only to the immediately preced-

ing matching construct in the pattern. /ab+/ matches an a followed by one or more b’s, not a

sequence of ab’s.

These patterns are called greedy, because by default they will match as much of the string as

they can. You can alter this behavior and have them match the minimum by adding a question

mark suffix. The repetition is then called lazy—it stops once it has done the minimum amount

of work required.

a = "The moon is made of cheese"
show_regexp(a, /\w+/) # => ->The<- moon is made of cheese

show_regexp(a, /\s.*\s/) # => The-> moon is made of <-cheese

show_regexp(a, /\s.*?\s/) # => The-> moon <-is made of cheese

show_regexp(a, /[aeiou]{2,99}/) # => The m->oo<-n is made of cheese

show_regexp(a, /mo?o/) # => The ->moo<-n is made of cheese

here's the lazy version

show_regexp(a, /mo??o/) # => The ->mo<-on is made of cheese

(There’s an additional modifier, +, that makes them greedy and also stops backtracking, but that

will have to wait until the advanced section of the chapter.)

Be very careful when using the * modifier. It matches zero or more occurrences. We often forget

about the zero part. In particular, a pattern that contains just a * repetition will always match,

whatever string you pass it. For example, the pattern /a*/ will always match, because every string

contains zero or more a’s.

a = "The moon is made of cheese"
both of these match an empty substring at the start of the string

show_regexp(a, /m*/) # => -><-The moon is made of cheese

show_regexp(a, /Z*/) # => -><-The moon is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape it with

a backslash. That’s because an unescaped vertical bar, as in |, matches either the construct that

precedes it or the construct that follows it:

a = "red ball blue sky"
show_regexp(a, /d|e/) # => r->e<-d ball blue sky

show_regexp(a, /al|lu/) # => red b->al<-l blue sky

show_regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 121

There’s a trap for the unwary here, because | has a very low precedence. The last example in

the previous lines matches red ball or angry sky, not red ball sky or red angry sky. To match red

ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within the group

is treated as a single regular expression.

This matches an 'a' followed by one or more 'n's

show_regexp('banana', /an+/) # => b->an<-ana

This matches the sequence 'an' one or more times

show_regexp('banana', /(an)+/) # => b->anan<-a

a = 'red ball blue sky'
show_regexp(a, /blue|red/) # => ->red<- ball blue sky

show_regexp(a, /(blue|red) \w+/) # => ->red ball<- blue sky

show_regexp(a, /(red|blue) \w+/) # => ->red ball<- blue sky

show_regexp(a, /red|blue \w+/) # => ->red<- ball blue sky

show_regexp(a, /red (ball|angry) sky/) # => no match

a = 'the red angry sky'
show_regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Parentheses also collect the results of pattern matching. Ruby counts opening parentheses and

for each stores the result of the partial match between it and the corresponding closing parenthe-

sis. You can use this partial match both within the rest of the pattern and in your Ruby program.

Within the pattern, the sequence \1 refers to the match of the first group, \2 the second group,

and so on. Outside the pattern, the special variables $1, $2, and so on, serve the same purpose.

/(\d\d):(\d\d)(..)/ =~ "12:50am" # => 0

"Hour is #$1, minute #$2" # => "Hour is 12, minute 50"

/((\d\d):(\d\d))(..)/ =~ "12:50am" # => 0

"Time is #$1" # => "Time is 12:50"

"Hour is #$2, minute #$3" # => "Hour is 12, minute 50"

"AM/PM is #$4" # => "AM/PM is am"

If you’re using the MatchData object returned by the match method, you can index into it to get

the corresponding subpatterns:

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[1]}, minute #{md[2]}" # => "Hour is 12, minute 50"

md = /((\d\d):(\d\d))(..)/.match("12:50am")
"Time is #{md[1]}" # => "Time is 12:50"

"Hour is #{md[2]}, minute #{md[3]}" # => "Hour is 12, minute 50"

"AM/PM is #{md[4]}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for various

forms of repetition:

match duplicated letter

show_regexp('He said "Hello"', /(\w)\1/) # => He said "He->ll<-o"

match duplicated substrings

show_regexp('Mississippi', /(\w+)\1/) # => M->ississ<-ippi

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 122

Rather than use numbers, you can also use names to refer to previously matched content. You 1.9

give a group a name by placing ?<name> immediately after the opening parenthesis. You can

subsequently refer to this named group using \k<name> (or \k’name’).

match duplicated letter

str = 'He said "Hello"'
show_regexp(str, /(?<char>\w)\k<char>/) # => He said "He->ll<-o"

match duplicated adjacent substrings

str = 'Mississippi'
show_regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local variables:4

/(?<hour>\d\d):(?<min>\d\d)(..)/ =~ "12:50am" # => 0

"Hour is #{hour}, minute #{min}" # => "Hour is 12, minute 50"

Once you use named matches in a particular regular expression, Ruby no longer bothers to

capture unnamed groups. Thus, in the previous example, you couldn’t refer to the last group

(which matches am) as $3.

Pattern-Based Substitution

We’ve already seen how sub and gsub replace the matched part of a string with other text. In

those previous examples, the pattern was always fixed text, but the substitution methods work

equally well if the pattern contains repetition, alternation, and grouping.

a = "quick brown fox"
a.sub(/[aeiou]/, '*') # => "q*ick brown fox"

a.gsub(/[aeiou]/, '*') # => "q**ck br*wn f*x"

a.sub(/\s\S+/, '') # => "quick fox"

a.gsub(/\s\S+/, '') # => "quick"

The substitution methods can take a string or a block. If a block is used, it is passed the matching

substring, and the block’s value is substituted into the original string.

a = "quick brown fox"
a.sub(/^./) {|match| match.upcase } # => "Quick brown fox"

a.gsub(/[aeiou]/) {|vowel| vowel.upcase } # => "qUIck brOwn fOx"

Maybe we want to normalize names entered by users into a web application. They may enter

DAVE THOMAS, dave thomas, or dAvE tHoMas, and we’d like to store it as Dave Thomas.

The following method is a simple first iteration. The pattern that matches the first character of a

word is \b\w—look for a word boundary followed by a word character. Combine this with gsub,

and we can hack the names:

def mixed_case(name)

name.downcase.gsub(/\b\w/) {|first| first.upcase }

end

mixed_case("DAVE THOMAS") # => "Dave Thomas"

mixed_case("dave thomas") # => "Dave Thomas"

mixed_case("dAvE tHoMas") # => "Dave Thomas"

4. Note that this works only with literal regular expressions (so you can’t, for example, assign a regular expression

object to a variable, match the contents of that variable against a string, and expect the local variables to be set).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

DIGGING DEEPER 123

There’s an idiomatic way to write the substitution in Ruby 1.9, but we’ll have to wait until

Section 23.3, The Symbol.to_proc Trick, on page 364 to see why it works:

def mixed_case(name)

name.downcase.gsub(/\b\w/, &:upcase)

end

mixed_case("dAvE tHoMas") # => "Dave Thomas"

You can also give sub and gsub a hash as the replacement parameter, in which case they will

look up matched groups and use the corresponding values as replacement text:

replacement = { "cat" => "feline", "dog" => "canine" }

replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => "feline unknown canine"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern, standing for

the nth group matched so far. The same sequences can be used in the second argument of sub

and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '\2, \1')
puts "nercpyitno".gsub(/(.)(.)/, '\2\1')

produces:

smith, fred

encryption

You can also reference named groups:

puts "fred:smith".sub(/(?<first>\w+):(?<last>\w+)/, '\k<last>, \k<first>')
puts "nercpyitno".gsub(/(?<c1>.)(?<c2>.)/, '\k<c2>\k<c1>')

produces:

smith, fred

encryption

Additional backslash sequences work in substitution strings: \& (last match), \+ (last matched

group), \‘ (string prior to match), \’ (string after match), and \\ (a literal backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious thing

is to write this:

str.gsub(/\\/, '\\\\')

Clearly, this code is trying to replace each backslash in str with two. The programmer doubled

up the backslashes in the replacement text, knowing that they’d be converted to \\ in syntax

analysis. However, when the substitution occurs, the regular expression engine performs another

pass through the string, converting \\ to \, so the net effect is to replace each single backslash

with another single backslash. You need to write gsub(/\\/, ’\\\\\\\\\’)!

str = 'a\b\c' # => "a\b\c"

str.gsub(/\\/, '\\\\\\\\') # => "a\\b\\c"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 124

However, using the fact that \& is replaced by the matched string, you could also write this:

str = 'a\b\c' # => "a\b\c"

str.gsub(/\\/, '\&\&') # => "a\\b\\c"

If you use the block form of gsub, the string for substitution is analyzed only once (during the

syntax pass), and the result is what you intended:

str = 'a\b\c' # => "a\b\c"

str.gsub(/\\/) { '\\\\' } # => "a\\b\\c"

At the start of this chapter, we said that it contained two emergency exits. The first was after

we discussed basic matching and substitution. This is the second: you now know as much about

regular expressions as the vast majority of Ruby developers. Feel free to break away and move

on to the next chapter. But if you’re feeling brave....

7.4 Advanced Regular Expressions

You may never need the information in the rest of this chapter. But, at the same time, knowing

some of the real power in the Ruby regular expression implementation might just dig you out of

a hole.

Regular Expression Extensions

Ruby uses the Oniguruma regular expression library. This offers a large number of extensions 1.9

over traditional Unix regular expressions. Most of these extensions are written between the

characters (? and). The parentheses that bracket these extensions are groups, but they do not

necessarily generate backreferences—some do not set the values of \1, $1, and so on.

The sequence (?# comment) inserts a comment into the pattern. The content is ignored during

pattern matching. As we’ll see, commenting complex regular expressions can be as helpful as

commenting complex code.

(?:re) makes re into a group without generating backreferences. This is often useful when you

need to group a set of constructs but don’t want the group to set the value of $1 or whatever. In

the example that follows, both patterns match a date with either colons or slashes between the

month, day, and year. The first form stores the separator character (which can be a slash or a

colon) in $2 and $4, but the second pattern doesn’t store the separator in an external variable.

date = "12/25/2010"

date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}

[$1,$2,$3,$4,$5] # => ["12", "/", "25", "/", "2010"]

date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}

[$1,$2,$3] # => ["12", "25", "2010"]

Lookahead and Lookbehind

You’ll sometimes want to match a pattern only if the matched substring is preceded by or fol-

lowed by some other pattern. That is, you want to set some context for your match but don’t

want to capture that context as part of the match.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 125

For example, you might want to match every word in a string that is followed by a comma, but

you don’t want the comma to form part of the match. Here you could use the charmingly named

zero-width positive lookahead extension. (?=re) matches re at this point but does not consume

it—you can look forward for the context of a match without affecting $&. In this example, we’ll

use scan to pick out the words:

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) # => ["red", "white"]

You can also match before the pattern using (?<=re) (zero-width positive lookbehind). This lets

you look for characters that precede the context of a match without affecting $&. The following

example matches the letters dog but only if they are preceded by the letters hot:

show_regexp("seadog hotdog", /(?<=hot)dog/) # => seadog hot->dog<-

For the lookbehind extension, re either must be a fixed length or consist of a set of fixed-length

alternatives. That is, (?<=aa) and (?<=aa|bbb) are valid, but (?<=a+b) is not.

Both forms have negated versions, (?!re) and (?<!re), which are true if the context is not present

in the target string.

Controlling Backtracking

Say you’re given the problem of searching a string for a sequence of Xs not followed by an O.

You know that a string of Xs can be represented as X+, and you can use a lookahead to check

that it isn’t followed by an O, so you code up the pattern /(X+)(?!O)/. Let’s try it:

re = /(X+)(?!O)/

This one works

re =~ "test XXXY" # => 5

$1 # => "XXX"

But, unfortunately, so does this one

re =~ "test XXXO" # => 5

$1 # => "XX"

Why did the second match succeed? Well, the regular expression engine saw the X+ in the

pattern and happily gobbled up all the Xs in the string. It then saw the pattern (?!O), saying

that it should not now be looking at an O. Unfortunately, it is looking at an O, so the match

doesn’t succeed. But the engine doesn’t give up. No sir! Instead it says, “Maybe I was wrong to

consume every single X in the string. Let’s try consuming one less and see what happens.” This

is called backtracking—when a match fails, the engine goes back and tries to match a different

way. In this case, by backtracking past a single character, it now finds itself looking at the last

X in the string (the one before the final O). And that X is not an O, so the negative lookahead

succeeds, and the pattern matches. Look carefully at the output of the previous program: there

are three Xs in the first match but only two in the second.

But this wasn’t the intent of our regexp. Once it finds a sequence of Xs, those Xs should be

locked away. We don’t want one of them being the terminator of the pattern. We can get that

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 126

behavior by telling Ruby not to backtrack once it finds a string of Xs. There are a couple of ways

of doing this.

The sequence (?>re) nests an independent regular expression within the first regular expression.

This expression is anchored at the current match position. If it consumes characters, these will

no longer be available to the higher-level regular expression. This construct therefore inhibits

backtracking.

Let’s try it with our previous code:

re = /((?>X+))(?!O)/

This one works

re =~ "test XXXY" # => 5

$1 # => "XXX"

Now this doesn't match

re =~ "test XXXO" # => nil

$1 # => nil

And this finds the second string of Xs

re =~ "test XXXO XXXXY" # => 10

$1 # => "XXXX"

You can also control backtracking by using a third form of repetition. We’re already seen greedy

repetition, such as re+, and lazy repetition, re+?. The third form is called possessive. You code it

using a plus sign after the repetition character. It behaves just like greedy repetition, consuming

as much of the string as it can. But once consumed, that part of the string can never be reexam-

ined by the pattern—the regular expression engine can’t backtrack past a possessive qualifier.

This means we could also write our code as this:

re = /(X++)(?!O)/

re =~ "test XXXY" # => 5

$1 # => "XXX"

re =~ "test XXXO" # => nil

$1 # => nil

re =~ "test XXXO XXXXY" # => 10

$1 # => "XXXX"

Backreferences and Named Matches

Within a pattern, the sequences \n (where n is a number), \k’n’, and \k<n> all refer to the nth

captured subpattern. Thus, the expression /(...)\1/ matches six characters with the first three

characters being the same as the last three.

Rather than refer to matches by their number, you can give them names and then refer to those

names. A subpattern is named using either of the syntaxes (?<name>...) or (?’name’...). You then

refer to these named captures using either \k<name> or \k’name’.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 127

For example, the following shows different ways of matching a time range (in the form hh:mm-

hh:mm) where the hour part is the same:

same = "12:15-12:45"
differ = "12:45-13:15"

use numbered backreference

same =~ /(\d\d):\d\d-\1:\d\d/ # => 0

differ =~ /(\d\d):\d\d-\1:\d\d/ # => nil

use named backreference

same =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => 0

differ =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => nil

Negative backreference numbers count backward from the place they’re used, so they are rela-

tive, not absolute, numbers. The following pattern matches four-letter palindromes:5

"abab" =~ /(.)(.)\k<-1>\k<-2>/ # => nil

"abba" =~ /(.)(.)\k<-1>\k<-2>/ # => 0

You can invoke a named subpattern using \g<name> or \g<number>. Note that this reexecutes

the match in the subpattern, in contrast to \k<name>, which matches whatever is matched by the

subpattern:

re = /(?<color>red|green|blue) \w+ \g<color> \w+/

re =~ "red sun blue moon" # => 0

re =~ "red sun white moon" # => nil

You can use \g recursively, invoking a pattern within itself. The following code matches a string

in which braces are properly nested:

re = /

\A

(?<brace_expression>

{

(

[^{}] # anything other than braces

| # ...or...

\g<brace_expression> # a nested brace expression

)*
}

)

\Z

/x

We use the x option to allow us to write the expression with lots of space, which makes it

easier to understand. We also indent it, just as we would indent Ruby code. And we can also

use Ruby-style comments to document the tricky stuff. You can read this regular expression as

follows: a brace expression is an open brace, then a sequence of zero or more characters or brace

expressions, and then a closing brace.

5. Words that read the same forward and backward

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 128

Nested Groups

The ability to invoke subpatterns recursively means that backreferences can get tricky. Ruby

solves this by allowing you to refer to a named or numbered group at a particular level of the

recursion—simply (!) add a +n or -n to refer to the capture at the given level relative to the

current level.

Here’s an example from the Oniguruma cheat sheet. It matches palindromes:

/\A(?<a>|.|(?:(?.)\g<a>\k<b+0>))\z/

That’s pretty hard to read, so let’s spread it out:

Download tut_regexp/palindrome_re.rb

palindrome_matcher = /

\A

(?<palindrome>

nothing, or

| \w # a single character, or

| (?: # x <palindrome> x

(?<some_letter>\w)

\g<palindrome>

\k<some_letter+0>

)

)

\z

/x

palindrome_matcher.match "madam" # => madam

palindrome_matcher.match "m" # => m

palindrome_matcher.match "adam" # =>

So, a palindrome is an empty string, a string containing a single character, or a character fol-

lowed by a palindrome, followed by that same character. The notation \k<some_letter+0> means

that the letter matched at the end of the inner palindrome will be the same letter that was at the

start of it. Inside the nesting, however, a different letter may wrap the interior palindrome.

Named Subroutines

There’s a trick that allows us to write subroutines inside regular expressions. Recall that we can

invoke a named group using \g<name>, and we define the group using (?<name>...). Normally,

the definition of the group is itself matched as part of executing the pattern. However, if you add

the suffix {0} to the group, it means “zero matches of this group,” so the group is not executed

when first encountered:

sentence = %r{

(?<subject> cat | dog | gerbil){0}

(?<verb> eats | drinks| generates){0}

(?<object> water | bones | PDFs){0}

(?<adjective> big | small | smelly){0}

(?<opt_adj> (\g<adjective>\s)?){0}

The\s\g<opt_adj>\g<subject>\s\g<verb>\s\g<opt_adj>\g<object>

}x

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ruby3/code/tut_regexp/palindrome_re.rb
http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 129

md = sentence.match("The cat drinks water")
puts "The subject is #{md[:subject]} and the verb is #{md[:verb]}"

md = sentence.match("The big dog eats smelly bones")
puts "The last adjective in the second sentence is #{md[:adjective]}"

sentence =~ "The gerbil generates big PDFs"
puts "And the object in the last sentence is #{$~[:object]}"

produces:

The subject is cat and the verb is drinks

The last adjective in the second sentence is smelly

And the object in the last sentence is PDFs

Setting Options

As we saw at the start of this chapter, you can add one or more of the options i (case insensitive),

(multiline), and x (allow spaces) to the end of a regular expression literal. You can also embed

these options within the pattern itself.

(?imx) Turns on the corresponding i, m, or x option. If used inside a group, the effect is

limited to that group.

(?-imx) Turns off the i, m, or x option.

(?imx:re) Turns on the i, m, or x option for re.

(?-imx:re) Turns off the i, m, or x option for re.

\z

So, that’s it. If you’ve made it this far, consider yourself a regular expression ninja. Get out there

and match some strings.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 130

POSIX Character Classes (Unicode)

Text in parentheses indicates the Unicode classes. These apply if the regular expres-

sion’s encoding is one of the Unicode encodings.

[:alnum:] Alphanumeric (Letter | Mark | Decimal_Number)

[:alpha:] Uppercase or lowercase letter (Letter | Mark)

[:ascii:] 7-bit character including nonprinting

[:blank:] Blank and tab (+ Space_Separator)

[:cntrl:] Control characters—at least 0x00–0x1f, 0x7f (Control | Format | Unassigned | Pri-

vate_Use | Surrogate)

[:digit:] Digit (Decimal_Number)

[:graph:] Printable character excluding space (Unicode also excludes Control, Unassigned, and

Surrogate)

[:lower:] Lowercase letter (Lowercase_Letter)

[:print:] Any printable character (including space)

[:punct:] Printable character excluding space and alphanumeric (Connector_Punctuation |

Dash_Punctuation | Close_Punctuation | Final_Punctuation | Initial_Punctuation |

Other_Punctuation | Open_Punctuation)

[:space:] Whitespace (same as \s)

[:upper:] Uppercase letter (Uppercase_Letter)

[:xdigit:] Hex digit (0–9, a–f, A–F)

[:word:] Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number | Connec-

tor_Punctuation)

Figure 7.2: Posix character classes

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

ADVANCED REGULAR EXPRESSIONS 131

Character Properties

\p{name} Matches character with named property

\p{^name} Matches any character except named property

\P{name} Matches any character except named property

Property names.

(As of Ruby 1.9.2, spaces, underscores, and case are ignored in property names.)

All encodings Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,

XDigit, Word, ASCII

EUC and SJIS Hiragana, Katakana

UTF-n Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, Ll, Lm, Lo, Lt, Lu, M, Mc, Me, Mn, N,

Nd, Nl, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Zl, Zp, Zs,

Arabic, Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid,

Canadian_Aboriginal, Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret,

Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi,

Han, Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana,

Kharoshthi, Khmer, Lao, Latin, Limbu, Linear_B, Malayalam, Mongolian,

Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian, Oriya, Osmanya,

Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le,

Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi

Figure 7.3: Unicode character properties

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ruby3

