
This extract shows the online version of this title, andmay contain features (such as hyperlinks and
colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit https://www.prag-
prog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com
https://www.pragprog.com


When you see a variable in your code, it’s useful to know what values can be assigned to
that variable without the code breaking. For example, you might have the following Ruby
method:

def mystery_method(x)
x * 3

end

You’d likely expect that x should be a number. But it’s also completely valid Ruby for x to
be a string ("a" * 3 resolves to “aaa”) or an array ([:a] * 3 resolves to [:a, :a, :a]).

Let’s say that this method is in your code, and over time people call mystery_method with
strings, integers, floating-point numbers, and so on, until somebody changes the method
and inadvertently changes what variables it’ll accept. Here’s an example:

def mystery_method(x)
x.abs * 3

end

Now all of those string and array uses break because abs isn’t defined for strings and arrays.
If the original developer had been able to specify that xmust be numeric, then the string and
array uses would’ve found some other place to multiply by three andwouldn’t have broken
when the method changed.

Historically, Ruby has gotten along just fine without requiring or allowing developers to
augment code with this kind of information about the expected values of a variable, which
is often called the type of the variable.

Spurred by the increasing complexity of large Ruby projects and the possibility of improved
performance, Ruby 3.0 added RBS, a mechanism for allowing developers to specify type
information about classes andmethods. In addition, a third-party tool called Sorbet provides
a separate mechanism for type control in Ruby. In this chapter, we take a look at both RBS
and Sorbet.

What’s a Type?
The terminology around types in programming languages can be confusing because each
language community uses the terms slightly differently.

Most generally, setting the type of a variable, attribute, or method argument limits the set of
values that can be assigned to that variable, attribute, or method argument. The type also
determines the behavior of the variable within the program. For example, the result of x / y
depends on the type of x and y. Inmany languages, the result will be different if the numbers
are integers than if they are floating-point types.

Many programming languages have a set of “basic types” that can be used, often including
strings, boolean values, different kinds of numerical values, and so on. Ruby doesn’t have
basic types. Every variable in Ruby is an instance of a class, and that class determines the
behavior of the variable. In Ruby, x / y is equivalent to the method call x./(y), and the behavior
depends on what class x is.

In many typed programming languages, you must declare the type of a variable before
it’s used. This is called explicit typing. Some programming languages can infer the type

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


of a variable from its first use, so if I say let x = 3 in TypeScript, TypeScript knows that x
is a number. This is called type inference.

In either case, there is usually a tool, often part of the compiler, that evaluates every variable
interaction to see if type information is followed. If, later in the TypeScript code, I try to say
x = "foo", TypeScript will give a compilation error because "foo" is a string. This is called static
typing.

Without type information, Ruby doesn’t do this. In Ruby, the type of a variable is determined
while the code is running by the variables that are assigned to it, and Ruby determines if
the variable can receive a method only at runtime. This is called dynamic typing, and the
process of determining the behavior of the method at the last possible moment is called late
binding.

There’s another distinction here that isn’t as useful to us. In some languages, the type barriers
aremore permeable, and if you type 3 + "3", the languagewill automatically coerce the string
to an integer and allow the addition to continue. This is called weak typing, and languages
that don’t do this have strong typing. You’ll sometimes see “strong typing” incorrectly used
as a synonym for “static typing,” but these are two different concepts and it’s useful to keep
them separate.

These are some of the benefits of static typing and a compilation step that validates all
assignments:

• If the compiler and runtime know information aboutwhat type to expect, they can often
optimize internal behavior and improve performance.

• A person reading the code can get more information about the intent and behavior of
the code if there is type information.

• A developer tool like an IDE or editor can use type information to provide information
to the developer as the code is being written.

These are some of the drawbacks:

• Statically typed code is usuallymore verbose than dynamic code. Though type inferenc-
ing has improved this situation.

• Sometimes a developer has to spend time convincing the type system that the code that
has been written is correct.

• Statically typed code is often less flexible than dynamic code and harder to change. (To
be fair, lots of people would see this as an advantage.)

The goal of the type systems in Ruby is to allow for asmany of the benefits of typed languages
as we can get without giving up the flexibility that makes Ruby, Ruby.

Official Ruby Typing with RBS
The official Ruby typing system is called RBS (short for Ruby Signature). With RBS, you
create a separate file that contains type signature information for all or part of your code.

Writing RBS
To take a look at how RBS works, we’ll use the gem we created in Writing and Packaging
Your Own Code into Gems, on page ?, and augment it with RBS typing. If you look at the

• 4

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


Aaagmnr gem code, you’ll see that it contains a directory named sig that we didn’t talkmuch
about. That directory is where you’re supposed to put the type information, and right now
it contains one file:

gems/aaagmnr/sig/aaagmnr.rbs
module Aaagmnr
VERSION: String
# See the writing guide of rbs: https://github.com/ruby/rbs#guides

end

The only thing this file tells us is that the module Aaagmnr has a VERSION constant, which is
a String. True enough, but not useful.

Here’s what an RBS file for the entire gem looks like:

typed_ruby/aaagmnr/sig/aaagmnr.rbs
module Aaagmnr
class Finder
@signatures: Hash[String, Array[String]]
def self.from_file: (String file_name) -> Finder
def initialize: (Array[String] dictionary_words) -> void
def lookup: (String word) -> Array[String]
def signature_of: (String word) -> String

end

class Options
attr_reader dictionary: Array[String]
attr_reader words_to_find: Array[String]

def initialize: (Array[String] argv) -> void
private def parse: (Array[String] argv) -> void

end

class Runner
@options: Array[String]
def initialize: (Array[String] argv) -> void
def run: () -> void

end

VERSION: String
end

The goal here is to describe the expected types of all the modules, constants, and methods
in the gem. The syntax is meant to be similar enough to Ruby to be readable, while still
providing for type information.

A full description of the syntax may be found at https://github.com/ruby/rbs/blob/master/docs/
syntax.md. We’ll talk about the most common usages here.

The .rbs file typically combines one or more entire modules into a single file, but, as with
typical Ruby, there’s nothing preventing you from splitting the file up as you please.

The basic structure ofmodule and class declarations has the same syntax as regular Ruby and
the side effect of allowing those constant names to be used as type names. In other words,
the same way we use String as a type name, after declaring class Finder, we could also use
Finder as a type in a method argument or return value or wherever.

Inside each class, this gem has two different kinds of declarations.

• Click  HERE  to purchase this book now.  discuss

Official Ruby Typing with RBS • 5

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/sig/aaagmnr.rbs
http://media.pragprog.com/titles/ruby5/code/typed_ruby/aaagmnr/sig/aaagmnr.rbs
https://github.com/ruby/rbs/blob/master/docs/syntax.md
https://github.com/ruby/rbs/blob/master/docs/syntax.md
http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


We declare attributes and constants, including VERSION: String. The Finder class declares
@signatures: Hash[String, Array[String]], meaning it expects to have an instance variable called
@signatures and the type of that variable is a Hashwhose keys are of type String and whose
values are of type Array[String]. The general syntax is the name of the instance variable,
followed by a colon and then by the type. The square bracket syntax here is called a
generic (more on this in Advanced RBS Syntax, on page ?), and it allows us to define
both the type of a container and the type of objects in the container, so Array[String] is an
Array container where each element is a String.

In general, any time you see a type in RBS, you can add a ? to the end of it to indicate that
the value can be nil. So, @name: String means the name has to be a string, but @name: String?
means the name can be a string or can be nil.

The lines attr_reader dictionary: Array[String] and attr_reader words_to_find: Array[String] are also
attribute declarations. Similar to how Ruby code works, attr_reader is both a shortcut for
declaring the type of an instance variable and a getter method. The related declaration
attr_writer declares the type of the instance variable and the setter method, and attr_accessor
declares all three. The syntax is: the kind of declaration, the name of the attribute, a colon,
and the type.

The rest of the lines in the file are type signatures of methods. For example, def lookup: (String
word) -> Array[String] tells us that the lookup method takes a positional argument named word
of type String and returns an array of strings.

The general syntax here is def followed by the name of the method, a colon, the attributes
inside parentheses, the -> arrow, and the return type.

The attribute listing has a few variants. As that declaration shows, positional arguments
have the type first followed by the variable name—the name is actually optional and isn’t
checked against the name in the actual code. The keyword arguments are in a different order:
name, colon, and then type. So def lookup: (word: String) -> Array[String]would indicate that word
is a keyword argument. Keyword arguments are checked against the actual Ruby method
signature.

An optional argument is denoted with a ? prefix, so def lookup: (?String) is a method with an
optional positional argument, but if the argument is specified, it can’t be nil. The two kinds
of optional can be combined: def lookup: (?String?) is a method that takes an argument that’s
both optional and can take a nil value.

Before we talk about more complex RBS syntax, let’s take a look at how you can use RBS.

Using RBS
Having taken the effort to create these type annotations, what can we do with them? Well,
there are two answers:

• There are some command-line tools that will do static analysis of your Ruby code. For
example, based on the RBS files, a tool might find cases where the code doesn’t match
the type information, indicating a potential bug.

• Depending on the editor or development environment you’re using, the tool may be
able to use the RBS files to provide hints or real-time error analysis as you type.
RubyMine provides significant support for RBS files.

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


The Ruby interpreter could also use RBS information to optimize code generation, it seems
as though more on that line of work is yet to come.

You may need to gem install rbs to get access to the RBS command-line tools.

RBS offers its own command-line tools. These are generally proof-of-concept tools. The rbs
list tool gives you a list of classes and modules used by the application. The rbs ancestors and
rbs methods tools both take the name of a class and provide what RBS knows about the
ancestors or methods of that class:

$ rbs ancestors String
::String
::Comparable
::Object
::Kernel
::BasicObject

And the rbsmethod call takes a class and amethod name andprovideswhat RBS knows about
that method:

rbs method String gsub
::String#gsub
defined_in: ::String
implementation: ::String
accessibility: public
types:

(::Regexp | ::string pattern, ::string replacement) -> ::String
| (::Regexp | ::string pattern, ::Hash[::String, ::String] hash) -> ::String
| (::Regexp | ::string pattern) { (::String match) -> ::_ToS } -> ::String
| (::Regexp | ::string pattern) -> ::Enumerator[::String, self]

There are other RBS commands that aren’t documented, and which presumably are either
not expected to be in use or are not yet complete.

The entire Ruby standard library has RBS files, so you can get type information about any
method in that library.

Ruby also provides a tool called TypeProf, which can help you generate RBS files. To use
this tool, first add gem "typeprof" to the gemfile of the application you’re working on and then
bundle install.

TypeProf takes a Ruby file, which should be the top-level file of your gem or application,
and optionally takes an RBS file, and it then spits out an RBS file. Here’s what running
TypeProf without the existing RBS file looks like for our gem:

$ typeprof lib/aaagmnr.rb
# TypeProf 0.21.3

# Classes
module Aaagmnr
VERSION: String

class Finder
@signatures: Hash[String, Array[String]]

def self.from_file: (untyped file_name) -> Finder
def initialize: (Array[String] dictionary_words) -> void
def lookup: (untyped word) -> Array[String]?

• Click  HERE  to purchase this book now.  discuss

Official Ruby Typing with RBS • 7

http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


def signature_of: (String word) -> String
end

class Options
DEFAULT_DICTIONARY: String

attr_reader dictionary: String?
attr_reader words_to_find: untyped
def initialize: (untyped argv) -> void

private
def parse: (untyped argv) -> bot

end

class Runner
@options: bot

def initialize: (untyped argv) -> void
def run: -> untyped

end

class Error < StandardError
end

end

This is similar to the RBS file that we created by hand, with a few changes:

• We forgot a couple of constants, like DEFAULT_DICTIONARY and Error.
• In quite a few cases, TypeProf can’t determine a type and puts in untyped. We know that
Finder#lookup takes a string and returns an array of strings, but TypeProf returns def
lookup: (untyped word) -> Array[String]?, meaning that it can’t infer a type for the parameter,
and it’s also assuming that nil is a potential output (which, looking at the code aswritten,
is correct—thatmethod can return nil if theword being looked up isn’t in the dictionary).

What you get from TypeProf, then, is a mix of items that we know about the code that
TypeProf can’t figure out and items that TypeProf can figure out but that we, the developers,
didn’t necessarily see. This makes TypeProf a useful way to start with RBS, but not nec-
essarily the completed goal.

As an alternative to running TypeProf from the command line, an experimental plugin for
Visual Studio Code (https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof) will
generate method type signatures as you write code.

To generate these type signatures, TypeProf executes your Ruby code…kind of. The phrase
the documentation uses is “abstractly executes,”whichmeans that it walks through the code
paths knowing the types of variables but not their values.

In other words, TypeProf tracks type information through the code, using variable assign-
ments and what it knows about method calls.

As an example, run the following code through TypeProf:

def approximate_word_count(sentence)
sentence.split(/\W+/).size

end

approximate_word_count("This is a sample word count")

• 8

• Click  HERE  to purchase this book now.  discuss

https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof
http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5


TypeProf will infer that sentence is a string from the literal assignment, and then it’ll walk
through the known type signatures in themethod. The splitmethod takes a string and returns
an array of strings, and the size method takes an array and returns an integer. So TypeProf
deduces that approximate_word_count takes a string argument and returns an integer.

TypeProf has some limitations. If there’s no call to a method or no assignment in the code,
then TypeProf is limited in how much information it has and will only provide limited and
probably overly general results. Metaprogramming will often confuse TypeProf, especially
if a lot of the data is unknown at load time. For example, TypeProf might be able to manage
a define_method over a known array, but using send where the argument is a variable will
confound it.

TypeProf continues to be under active development. An up-to-date description of changes
can be found at https://github.com/ruby/typeprof/blob/master/doc/doc.md.

• Click  HERE  to purchase this book now.  discuss

Official Ruby Typing with RBS • 9

https://github.com/ruby/typeprof/blob/master/doc/doc.md
http://pragprog.com/titles/ruby5
http://forums.pragprog.com/forums/ruby5

