
Extracted from:

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

This PDF file contains pages extracted from Modern Systems Programming with
Scala Native, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

Richard Whaling

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-622-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introducing Concurrency with fork() and wait()
In a UNIX-like OS, processes are traditionally created with the system call
fork(). fork() doesn’t create a process out of thin air; instead, it creates a copy
of the process that calls it, which will have access to all of the calling process’s
state and code. This is for a good reason: even if we’re going to call exec, we
need some way to control the behavior of the new process before exec is called.
fork() allows us to both create a new process and coordinate its behavior with
the rest of our code.

Its signature is simple:

def fork():Int

fork() takes no arguments and returns an Int. Unlike every other function we’ve
discussed, and probably unlike every function you’ve ever written, fork() returns
twice. It returns exactly once in the calling process, and it returns exactly
once in the newly created process.

fork vs clone

Although fork is a low-level concurrency primitive, fork() itself is,
surprisingly, not a system call. Just like malloc() wraps the system
call sbrk(), fork() likewise wraps a system call named clone() that is
similarly unsuited to use by humans. clone() is responsible for
creating new processes, as well as new threads, and can control
the isolation of units of execution in a more fine-grained fashion
than we’ll need to.

What is particularly unusual is that it returns different values to the two
processes. In the calling process, it returns the process id of the newly created
process—an integer that uniquely identifies the process for as long as it exists
in the system’s process table. In the new process, fork() instead returns 0. By
inspecting the return value of fork(), we can thus determine which of the two
new processes we are in.

To wrap fork() in a way that is suitable to idiomatic Scala, let’s just pass it a
runnable task, and then return the resulting PID in the parent while ensuring
that the child terminates after completing its task:

ForkWaitShell/nativeFork/nativeFork.scala
def doFork(task:Function0[Int]):Int = {

val pid = fork()
if (pid > 0) {

pid
} else {

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rwscala/code/ForkWaitShell/nativeFork/nativeFork.scala
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

val res = task.apply()
stdlib.exit(res)
res

}
}

Note, however, that when we execute doFork(), the parent will return immedi-
ately, while the child is still running, which means we’ll need to be very
careful about how we proceed. All modern operating systems take responsi-
bility for deciding when processes run, where they run, and for how long. We
saw this in Chapter 3, Writing a Simple HTTP Client, on page ?, when we
observed that other programs would run while ours was blocked waiting for
I/O. And in a multicore operating system, not only will both processes proceed
with their programs separately, in any order, they may also execute at the
same time. This is called preemptive multitasking, and it can require a certain
amount of defensive coding. For example, could a “race condition” emerge
with unintended behaviors if your two processes are executed in a different
order than you expected? Fortunately, we have powerful tools to coordinate
the work of our processes.

First, there’s getpid() and getppid():

def getpid():Int
def getppid():Int

getpid() simply returns the process id of the process that calls it. This will be
useful for understanding the behavior of complex chains of processes.

getppid() returns the pid of the parent process when it’s called. Because pro-
cesses are created by fork, every process should have a parent process. In
some cases, however, a parent may exit before a child, in which case either
the “orphaned” child process may be terminated, or else it will be “adopted”
by PID 1, the init process.

Process Groups and Sessions

In addition to a parent process, UNIX processes also belong to
process groups and sessions. Typically, these are used for scenar-
ios such as ensuring that all processes spawned by a terminal
session terminate at the same time as the original terminal. This
book won’t deal with process groups or sessions in depth, but you
can refer to the manual for your favorite UNIX OS for more details.

Finally, we must consider wait() and waitpid():

def wait(status:Ptr[Int]):Int
def waitpid(pid:Int, status:Ptr[Int], options:Int):Int

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

def check_status(status:Ptr[Int]):Int

wait() is the essential function for synchronizing processes. When called, it blocks
until a child of the calling process completes, sets its return code in status, and
returns the pid of the completed child process. waitpid simply provides more
options: the argument pid can take either the pid of a specific child process, 0
to wait for any child in the same process group, -1 to wait for any child group
at all, and -k to wait for any child in process group k. Likewise, options can take
several flags, most important of which is WNOHANG, which prevents waitpid()
from blocking, and instead returns 0 immediately if no children are exited.

One quirk in the case of certain anomalous exit conditions is that the status
return may have multiple values, packed bit-wise into a 4-byte integer address.
Although these can be unpacked manually, it’s usually best to rely on your
OS’s facilities for doing so. In Scala Native, these are packaged by the
check_status function, which will return the exit code of a terminated process,
given a status value. For our purposes, it’s sufficient to just check that status
is nonzero.

Waiting Is Mandatory

If you’re creating processes with fork(), it’s essential that you plan
to call wait() for each one. Completed child processes keep their
exit code in the kernel’s process table until wait() is called. These
so-called zombie processes can overwhelm and crash a system,
even outside of container boundaries, if they’re allowed to grow
unchecked.

And if we put these together with some boilerplate code to check the different
reasons for termination, we get the following:

ForkWaitShell/nativeFork/nativeFork.scala
def await(pid:Int):Int = {

val status = stackalloc[Int]
waitpid(pid, status, 0)
val statusCode = !status
if (statusCode != 0) {

throw new Exception(s"Child process returned error $statusCode")
}
!status

}

Now we have the basic ingredients in place to launch and monitor commands,
just like a shell! All we have to do is stitch runCommand, doFork, and await together,
and then it’s straightforward to use if we can pass in some string arguments:

• Click HERE to purchase this book now. discuss

Introducing Concurrency with fork() and wait() • 7

http://media.pragprog.com/titles/rwscala/code/ForkWaitShell/nativeFork/nativeFork.scala
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

ForkWaitShell/nativeFork/nativeFork.scala
def doAndAwait(task:Function0[Int]):Int = {

val pid = doFork(task)
await(pid)

}

ForkWaitShell/nativeFork/nativeFork.scala
def main(args:Array[String]):Unit = {

if (args.size == 0) {
println("bye")
stdlib.exit(1)

}

println("about to fork")

val status = doAndAwait { () =>
println(s"in child, about to exec command: ${args.toSeq}")
runCommand(args)

}
println(s"wait status ${status}")

}

When run, we get the following output:

$./target/scala-2.11/nativefork-out /bin/ls -l
about to fork
in child, about to exec command: WrappedArray(/bin/ls, -l)
build.sbt nativeFork.scala project target
wait status 0

Success! Now we can execute programs, just like a shell. However, a shell
can do more than run single programs; some of the most powerful shell
capabilities involve running multiple programs in different configurations and
routing their inputs and outputs in a controlled fashion. So, how do we
implement these patterns in Scala Native?

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rwscala/code/ForkWaitShell/nativeFork/nativeFork.scala
http://media.pragprog.com/titles/rwscala/code/ForkWaitShell/nativeFork/nativeFork.scala
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

