
Extracted from:

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

This PDF file contains pages extracted from Modern Systems Programming with
Scala Native, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

Richard Whaling

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-622-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Stack and the Heap
Memory addresses in a process are virtualized and segmented. A piece of
hardware called a memory management unit (MMU) translates between the
addresses that our program can see and the much more complex hardware
devices, all while ensuring isolation as multiple programs run simultaneously.
It does this by assigning chunks of memory, called pages, to specific positions
in the address space of a single program. For example, if there are two pro-
grams running at the same time on my computer, they can both have access
to totally different objects with the memory address 0x12345678, because
the OS has mapped different pages of RAM to that address.

A running program with an isolated address space is called a process. (You’ll
learn more about processes in Chapter 4, Managing Processes: A Deconstruct-
ed Shell, on page ?.) It’s also possible to create concurrent programs where
multiple execution contexts occur simultaneously and share a single address
space: such execution contexts are called threads, and although they’re
common in JVM programming, we’ll make little use of them in this book.

What does this mean for us? As programmers, we see the impact of the OS’s
memory management practices in the properties of different kinds of memory,
which live in different ranges of the address space. Typically, we’ll encounter
memory addresses in the following three segments:

• The stack segment, which holds short-lived local variables that live as
long as the function that calls them.

• The text segment, which is a read-only segment containing the instructions
for the program itself.

• The data segment or heap segment, which holds everything else.

You’ll learn more about how to use the text segment later in this chapter. For
now, we need to figure out how to allocate memory on the heap and what
constraints we’ll need to keep in mind to use it correctly. The most important
rule to remember with heap memory is this: once heap memory is allocated,
we’re responsible for it in every sense. (You’ll learn more about exactly what
that means shortly.)

Heap memory management is one of the fundamental problems of systems
programming. You could spend years studying and refining various techniques,
and this chapter will only scratch the surface. Errors in memory allocation
can also be extremely hard to test, isolate, and debug. For this reason, I
strongly advocate the approach of using manual allocation only where neces-

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

sary, and instead relying on higher-level techniques wherever performance
constraints aren’t extreme.

All that being said, manual memory management allows for a level of clever-
ness and optimization in program design unmatched by any higher-level
language, and a well-designed allocation scheme can be both elegant and
highly performant.

malloc
The fundamental function for allocating heap memory is malloc, which has a
straightforward signature:

def malloc(size:Int):Ptr[Byte]

malloc’s simple signature hides a great deal of subtlety. First of all, you may
notice that unlike stackalloc, malloc doesn’t take a type parameter; instead it
just takes the number of bytes requested and returns a pointer to an unused
region of memory of the requested size. In theory, malloc can fail, but that’s
essentially impossible on a modern system—your operating system will gen-
erally terminate the process before malloc itself returns an error.

Since malloc returns a Ptr[Byte], it’s pretty straightforward to apply it to handling
the sort of string and buffer data we used in the previous chapter. But what
if we want to allocate space for a struct or an array of structs?

To create space for structured data, we can use two techniques in tandem: we
can use Scala Native’s built-in sizeof[T] function to compute the size, in bytes, of
the data type we need, and then multiply that size by the number of elements
we wish to store. However, we might request space for ten integers like this:

val 10_ints = malloc(10 * sizeof[Int])

But the type of 10_ints is still going to be Ptr[Byte], not the Ptr[Int] that we want!

The solution to the problem is a cast, an instruction to the compiler to rein-
terpret the type of a pointer. A cast is not the same as a conversion—no
transformation is applied to the contents of a variable when we cast it. The
most common use of a cast is to convert pointer types to and from Ptr[Byte],
not only for use with malloc, but also for quasi-generic functions such as malloc
(and qsort) in which Ptr[Byte] effectively serves as a catch-all reference type,
analogous to Scala’s AnyRef.

To cast our 10_ints to our desired type of Ptr[Int], we would do this:

val ngram_array = malloc(10 * sizeof[Int]).cast[Ptr[Int]]

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

Whew! But before we can safely use malloc to store our data, we’ll need to look
at two more functions that are essential for working with heap memory: free
and realloc.

free
When we allocate memory with malloc, that block of memory will stay around
for as long as we need it; however, we have no garbage collector to rely on
with malloc, so if we know we’re done with a pointer, we need to call free() to
give it back. Failing to call free() in a long-lived program will result in a memory
leak, in which your program continues to allocate new memory without ever
reclaiming unused space until your computer’s RAM is totally exhausted.

free works like this:

def free(p:Ptr[Byte]):Unit

But, there are a few catches that aren’t evident in the signature. First of all,
the pointer passed to free must be a valid pointer created by malloc that has
not been freed previously. Calling free twice on the same pointer is a severe
error, as is calling free on a pointer on the stack, a function pointer, or anything
else not managed by malloc.

malloc and free: Not System Calls

malloc is another good example of a major C standard library
function that isn’t a system call. malloc, internally, keeps track of
the total size of the heap, plus the size and location of every allo-
cated chunk of memory within it. When we ask for more memory,
malloc will either give us an available chunk of memory within the
heap or it will grow the heap using the more obscure system call,
sbrk, to change the size of the heap segment itself.

Likewise, free never makes a system call, but it can still be slow—
maintaining malloc’s map of allocated memory is expensive in a
data-intensive program.

The best way to handle malloc and free is to structure your program so that
every pointer created by malloc has a clear lifecycle, such that you can be
assured that free will be called in an orderly way for every call to malloc. If it
isn’t possible to do this, it may be worth either redesigning your program to
support this pattern, or else rely on a garbage collector instead.

One edge case can simplify things: if you have a short-lived program, there’s
relatively little benefit to calling free exhaustively immediately before your
program terminates. All memory, stack or heap, will be released when your

• Click HERE to purchase this book now. discuss

The Stack and the Heap • 7

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

process exits, and it can sometimes be useful to write a short-lived program
that simply mallocs until completion.

One more trick we can do: realloc will allow us to resize a block of memory
returned by malloc. Sort of.

realloc
realloc has the following signature:

def realloc(in:Ptr[Byte]):Ptr[Byte]

realloc takes a pointer as its sole argument and on success, returns a pointer
to a region of memory of the desired size. It may or may not resize the region
in-place, depending on whether there is enough space for it in adjacent areas
of memory. If realloc returns a pointer to a new address, realloc will internally
copy your data from the old space to the new, larger area and free the old
pointer. However, this can be dangerous if you have any outstanding pointers
to the old region somewhere in your program because they have now been
invalidated in a nondeterminstic way.

In other words, realloc is powerful, but dangerous, and it can also be expensive.
When we use it, we’ll want to use it as little as possible.

As you may have observed, all of these heap memory management functions
have quirks, caveats, and dangers associated with them. Wherever possible,
we’ll try to isolate this code, and provide a clean abstraction over it, rather
than let our malloc operations and such spread all over our codebase.

Zones
The stack and the heap have been with us for about as long as we’ve had
modern computers; but, Scala Native also provides a newer technique for
semiautomatic memory management, in the form of the Zone object. A Zone is
an object that can allocate memory and track its usage for us; in other words,
it automatically cleans up memory like the stack does, but it can work in the
much larger heap segment. It also isn’t bound to the scope of a single function
—instead, a Zone object can be passed as an implicit argument, which allows
many nested functions to share a single Zone, following this sort of pattern:

def handler(s:CString):CString = Zone { implicit z =>
val stringSize = strlen(s) + 1
val transformed_1 = native.alloc[Byte](stringSize)
inner_handler(transformed)

}

def inner_handler(s:CString)(implicit z: Zone):CString = {

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

// the inner handler can allocate as much as it wants here,
// and it will all get cleaned up when the outer handler returns.

}

• Click HERE to purchase this book now. discuss

The Stack and the Heap • 9

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

Zones are a great alternative to the stack for short-lived objects, and we’ll continue
to explore ways to use them, especially in the second half of the book.

But for now, let’s shift gears and try to plan out how to store our data in the
big memory chunks that malloc and its friends can give us.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

