
Extracted from:

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

This PDF file contains pages extracted from Modern Systems Programming with
Scala Native, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Systems Programming
with Scala Native

Write Lean, High-Performance Code without the JVM

Richard Whaling

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-622-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Preface
If you’ve ever been frustrated by the many layers of abstraction between your
code and the machine it runs on, you’re looking at the right book. Over the
coming chapters, I’ll show you how you can use Scala Native to build efficient,
modern programs from the ground up, focusing on practical use cases like
REST clients, microservices, and bulk data processing. With Scala Native,
you don’t have to choose between elegant code and bare-metal performance.

Who This Book Is For
This book is for anyone who wants to learn how to build real software from
scratch with a cutting-edge language. Maybe you learned Scala or Clojure on
the job, but want to learn more about how to work “close to the metal” in a
functional language. Maybe you’re an enthusiast and want to write smaller,
lightweight Scala programs that perform on tiny, near-embedded Linux sys-
tems. Or maybe you’re a devops engineer with a strong Java background,
who is just learning Scala, and you want to write strongly typed, testable code
that doesn’t impose the runtime penalties of the JVM. In other words, this
book is for the folks who are my peers and colleagues in the Scala and greater
JVM-language community.

I’ve tried my hardest to make this book accessible to folks with no prior sys-
tems programming experience—you’ll learn about arrays, pointers, and the
rest, as we go along.

All the code is in Scala, but we won’t be using the advanced Scala techniques
you might find in a functional programming text. When we do use intermedi-
ate-level techniques like implicits, I’ll call them out.

That said, a few days’ worth of experience with Scala is highly recommended.
If you’re totally new to Scala, there are a lot of great resources online. The
official Tour of Scala1 is a great place to start, and if you want to go deeper,

1. https://docs.scala-lang.org/tour/tour-of-scala.html

• Click HERE to purchase this book now. discuss

https://docs.scala-lang.org/tour/tour-of-scala.html
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

Dave Gurnell’s and Noel Welsh’s Creative Scala2 or Martin Odersky’s Func-
tional Programming Principles in Scala3 online course are both excellent re-
sources. Pragmatic Scala4 by Venkat Subramaniam offers a great, approachable
book-length treatment, as does Scala for the Impatient5 by Cay Horstmann.
Programming in Scala,6 by Martin Odersky, Lex Spoon, and Bill Venners, is
the official book by the author of the language, and is a great, thorough refer-
ence guide, but make sure you get the third edition—the second and first
editions are significantly out of date now.

What’s In This Book
This book is designed as a series of projects that introduce the fundamental
and powerful techniques of systems programming, one by one. Each chapter
discusses an important topic in systems programming, and in the spirit of
adventure, we may not always take the most direct route to our destination.
Sometimes it’s best to make a few mistakes, or do things by hand a few times
before we skip ahead to the “right answer.”

The work will all pay off, though. As you progress and master more and more
techniques, you will gradually put the pieces together into something greater
than the sum of its parts. And by the end, not only will you have the code for
a lightweight, asynchronous microservice framework, you’ll also be able to
write one yourself if you don’t like the way I did it.

The book is divided into two parts:

Part I dives into the fundamental techniques of systems programming using
the basic facilities that UNIX-based operating systems have had since the
1980s. Unlike traditional systems programming books, however, networking
is introduced early. For a modern programmer, working with remote services
over HTTP is more relevant and practical than local file I/O. I then introduce
process-based concurrency and parallelism. Although most Scala programmers
will be more familiar with threads, processes are a powerful technique that
distinguishes Scala Native from most other programming languages, and
they’re a great, safe introduction to asynchronous programming. We then
look at combining these techniques to build a minimalist HTTP server and

2. https://www.creativescala.org/creative-scala.html
3. https://www.coursera.org/learn/progfun1
4. https://pragprog.com/book/vsscala2/pragmatic-scala
5. https://horstmann.com/scala
6. https://www.artima.com/shop/programming_in_scala_3ed

Preface • vi

• Click HERE to purchase this book now. discuss

https://www.creativescala.org/creative-scala.html
https://www.coursera.org/learn/progfun1
https://pragprog.com/book/vsscala2/pragmatic-scala
https://horstmann.com/scala
https://www.artima.com/shop/programming_in_scala_3ed
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

measure its performance with a simple stress test. However, we also look at
the limits of these traditional techniques.

In Part II, we’ll put the “modern” in “modern systems programming.” From
this point on, all of our code will be fully asynchronous, building upon the
capabilities of the event loop library, libuv. Working with an industrial-strength
C library like this, we’ll introduce new complexities to our code, but it also
gives Scala Native a chance to truly shine. With libuv, we’ll revisit our HTTP
server, introduce idiomatic Scala concurrency techniques, and learn how to
work with durable data stores. Then, when we put those components together,
we’ll have built a framework for solving real-world problems. I’m skeptical of
buzzwords, but the low overhead and light footprint of Scala Native code
really does put JVM-based “microservices” to shame.

Working with the Code
All the code in this book has been tested with Scala Native 0.4.0-M2, Scala
2.11.12, and sbt 0.13.15 on Mac OS X and Linux (via Docker). You can get
detailed instructions on how to set up a Scala Native development environment
for Mac, Windows, or Linux in Appendix 1, Setting Up the Environment, on
page ?. Since slight environment differences can be disruptive to low-level
programs, I recommend using Docker on your preferred development machine,
and the examples in the text reflect that.

A Note on Versions

Scala Native is rapidly evolving. The example code in this chapter,
as well as all other code in this book, is written for the most recent
version of Scala Native available, 0.4.0-M2. To ensure forward
compatibility, all of the sbt projects include a compatibility shim
file; to use with a newer version, just remove the shim!

You may also notice all the code is for Scala 2.11. When Scala 2.12
and 2.13 become available for Scala Native, I’ll update the code
files as well. You can download the latest version of the sample
code on the pragprog.com website (https://pragprog.com/book/rwscala).

How the Code Is Organized
You can download the source code used in this book from the book’s web
page at pragprog.com.7 If you’re reading the electronic version of this book,

7. https://pragprog.com/titles/rwscala/source_code

• Click HERE to purchase this book now. discuss

Working with the Code • vii

https://pragprog.com/book/rwscala
https://pragprog.com/titles/rwscala/source_code
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

you can click the box above the code excerpts to download that source code
directly. Or, if you use the Docker environment, you’ve already got it.

The code is organized by chapter, and within each chapter, the code is organized
into individual projects, each with its own folder. Each project is a self-contained
codebase, designed to be built by sbt,8 the standard Scala build tool.

One important note if you’re trying to modify the code: sometimes, for concise
presentation, I will not show import statements and outer object Main wrappers
in the code printed in the book. For example, have a look at this snippet:

import scalanative.unsafe._

object Main {
def main(args:Array[String]:Unit = {

// invoking various functions here
???

}

def helperFunction(arg1:Int, arg2:String) = ???
}

It may be displayed as:

def main(args:Array[String]:Unit = {
// invoking various functions here
???

}

def helperFunction(arg1:Int, arg2:String) = ???

However, all the code files that you download and use are fully functional
and complete. If you’re interested in modifying my examples, definitely start
with the files.

About Text Editors
Although there’s no one standard for text editors when it comes to Scala,
there are many options. Because Scala Native is still relatively new, the sup-
port for it is imperfect in complex IDEs. I instead recommend a plain text
editor with good support for Scala syntax, like VSCode, Atom, emacs, or vi.
Part of the beauty of starting from scratch is that we don’t have to deal with
giant Java dependencies with hundreds of classes—our code will be lean
enough to write without sophisticated editor assistance. That said, I’ve found
that the Metals plugin9 for VSCode offers a good balance of common-sense
help in an unobtrusive way.

8. https://www.scala-sbt.org
9. https://scalameta.org/metals

Preface • viii

• Click HERE to purchase this book now. discuss

https://www.scala-sbt.org
https://scalameta.org/metals
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

Online Resources
You’ll definitely want to keep tabs on the book’s web page at pragprog.com10

for all the latest code and updates. And if you find any errata, there’s a place
to let me know about it.11 I’ve also created a dedicated chat room on Gitter.12

If you have any problems building or running the code in the book, or just
want to hang out and chat, come on by! I also highly recommend perusing
Scala Native’s official site,13 and referring to the Scala Native source code on
Github14 for the occasional deep dive.

With those resources in hand, it’s time to get started!

10. https://pragprog.com/book/rwscala
11. https://pragprog.com/titles/rwscala/errata
12. https://gitter.im/scala-native-book/community
13. https://scala-native.readthedocs.io
14. https://github.com/scala-native/scala-native

• Click HERE to purchase this book now. discuss

Online Resources • ix

https://pragprog.com/book/rwscala
https://pragprog.com/titles/rwscala/errata
https://gitter.im/scala-native-book/community
https://scala-native.readthedocs.io
https://github.com/scala-native/scala-native
http://pragprog.com/titles/rwscala
http://forums.pragprog.com/forums/rwscala

