
Extracted from:

From Ruby to Elixir
Unleash the Full Potential of Functional Programming

This PDF file contains pages extracted from From Ruby to Elixir, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

From Ruby to Elixir
Unleash the Full Potential of Functional Programming

Stephen Bussey

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-031-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—May 31, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Pattern matching will change the way that you write code. It’s a simple—yet
extremely powerful—feature that is built into the foundation of Elixir. Pattern
matching is used in function definitions, variable assignment, and control
flows—it’s core to the language design. And once you master it, you won’t
want to go back.

In Ruby (and most languages), the core structures for control flow are if
statements. This is easy to use if you want to check whether a value is one
of two candidate values—true or false. It becomes cumbersome if you want
to check whether a value is one of many possible values—based on string
contents, array values, map keys, etc. Elixir has if statements, but it also has
something more powerful.

In this chapter, you’ll see how Elixir’s case statement completely replaces if
and switch statements. Elixirists use case statements a lot, so it’s good to get
comfortable with it. Luckily, it’s also simple. You just need to know how pat-
tern matching works. The syntax of pattern matching is simple, but its roots
run deep and it takes a little bit of practice to get used to. This chapter builds
up slowly so that you have everything you need to be confident with patterns.

We’ll start by looking at the most basic forms of pattern matching. Then,
you’ll see how case statements are used in control flow. Finally, we’ll combine
everything to see how pattern matching affects function definitions and how
pattern matching makes recursive functions much easier to write.

Pattern matching is a game changer, so let’s dive in!

Pattern Matching Basics
Elixir does not have a normal assignment operator. In most languages, the
= operator is used for simple left = "value" statements. In Elixir, this operator
is called the match operator and it initiates pattern matching.

Pattern matching is implemented by the BEAM, so it’s baked into the runtime
of the language. There are optimizations that make it efficient even for a large
number of pattern clauses. So, you can use pattern matching without worrying
about a negative performance impact on your application.

In this section, we’ll go over different pattern matching syntaxes for basic
data types, lists, maps, tuples, and more.

Match Basic Types
Let’s start with the most basic syntax for pattern matching. Open a new IEx
session and type the following:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

$ iex
iex> 1 = 1
1

iex> a_number = 1
1

iex> 1 = a_number
1

This first example is seemingly simple, but 1 = 1 is quite unusual. In Ruby,
you can only have variables on the left side of =. Clearly, that’s not the case
here.

To evaluate a pattern mentally, execute the right side and then compare the
result with the left side. Assign any variables that are on the left side. If the
patterns don’t match, then you get a MatchError:

iex> 1 = 2
** (MatchError) no match of right hand side value: 2

Variable assignment works just like it does in Ruby. Values are re-assigned
when they’re on the left side:

iex> a_number = 1
iex> a_number = 2
iex> a_number
2

One thing that trips up many new Elixir programmers is that you cannot
have function calls on the left side of the =.

iex> 1 + 1 = 2
CompileError: cannot invoke remote function :erlang.+/2 inside a match

iex>
defmodule Local do

def call do
test() = 1

end

defp test do
1

end
end

** (CompileError): cannot find or invoke local test/0 inside match.
Only macros can be invoked in a match and they must be defined
before their invocation. Called as: test()

This is a very useful error message. It tells us about our coding error, and
also lets us know that some functions (macros) can be invoked in a match
clause.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

It’s not common to write macro-based match functions yourself, but you’ll
frequently use ones provided by Elixir. Besides lists and maps—which we’ll
cover next—string concatenation is commonly used. Here’s an example that
uses string concatenation (<>) in a match clause:

iex> "store:" <> data_command = "store:Widget:process"
"store:Widget:process"

iex> data_command
"Widget:process"

The <> appears on the left side of the = symbol and a variable is used where
a string part would be. Elixir pattern matches the string and extracts the
relevant text into the data_command variable.

This is a very powerful way to split apart text without calling String.split/2. But
it’s not without it’s limitations. The variable must always be the last part of
the concatenation. You can do this:

iex> "text" <> ":" <> number = "text:7"
iex> number
"7"

But you can’t do this:

iex> "text" <> symbol <> number = "text:7"
** (ArgumentError) the left argument of <> operator inside a match

should always be a literal binary because its size can't be
verified. Got: symbol

Even with this limitation, it’s still extremely useful.

Let’s explore other powerful pattern matching forms. We’ll look at lists, maps,
and tuples next.

Match Data Structures
Lists, tuples, and maps are fully compatible with pattern matching. You will
commonly use this two ways. The first is to extract data structure components
into variables so you can operate on them. The second is to check if an input
matches a certain structure, as part of control flow.

This section focuses on extracting the components of data structures. Open
a new IEx session and type the following:

$ iex
iex> [a] = [1]
iex> a
1

iex> {:ok, result} = {:ok, "my result"}

• Click HERE to purchase this book now. discuss

Pattern Matching Basics • 5

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

iex> result
"my result"

iex> [a, 2, c] = [1, 2, 3]
iex> {a, c}
{1, 3}

iex> [a] = [1, 2]
** (MatchError) no match of right hand side value: [1, 2]

Lists and tuples can be matched on an exact-position basis. Each position
on the right and left must have compatible patterns. You can even separate
a data structure into multiple variables, like a and c in the previous code. If
your structure doesn’t match the pattern provided, you get a MatchError.

Parts of a list are matched with the | and ++ operators:

iex> [head | tail] = [1, 2, 3, 4]
iex> head
1

iex> tail
[2, 3, 4]

iex> [first, second | rest] = [1, 2, 3, 4]
iex> {first, second}
{1, 2}

iex> [first, second] ++ rest = [1, 2, 3, 4]
iex> {first, second}
{1, 2}

The | operator is used inside of the list brackets to represent the beginning
of the list. One or more elements can be matched at a time.

The ++ operator is used to capture the concatenation of two lists. It’s less
common to see this syntax, though.

One thing you’ll notice from these match clauses is that they behave exactly
like their function versions. This makes the syntax very intuitive to use. If
you can use <> or [|] in your code, then you can use it in a pattern match
clause.

Pattern matching with maps is also intuitive:

iex> %{a: a} = %{a: 1, b: 2}
iex> a
1

iex> %{a: 1, b: nil} = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

iex> %{list: [%{a: ["a"]}, %{b: [b]}]} = %{list: [%{a: ["a"]}, %{b: ["b"]}]}
iex> b

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

"b"

That last example is a bit dense, but shows you that the complexity of the
match clause is not limited, as long as it uses valid syntax.

Map matching behaves differently than lists because maps do not have to
perfectly match. In the first example, the left side does not mention the b key
at all. Maps are loosely matched when the key is not specified. This is very
useful in practice, because you often extract a few keys of a map. Here’s a
simple example to demonstrate this:

iex> [] = [1]
** (MatchError) no match of right hand side value: [1]

iex> %{} = %{a: 1}
%{a: 1}

The left side of the list match is empty, and it doesn’t match the right side
list. The left side of the map match is empty, but it still matches the right
side map. Maps are loosely matched but lists are strictly matched.

Let’s see how we can reference existing values in a pattern match clause.

Pinned Values
You are not limited to only assigning variables in a pattern match. The pin
operator lets you use the value of an existing variable inside of your pattern
match. This is most useful in test suites, where you want to guarantee that
different values match inside of a data structure.

Prepend the variable with the ̂ symbol to pin its value. Let’s see this in action:

iex> var = :match
iex> ^var = :match
:match

iex> ^var = :no_match
** (MatchError) no match of right hand side value: :no_match

iex> [^var, second] = [:match, :other]
iex> second
:other

Pinned values are strictly enforced, so the result must perfectly match or
you’ll receive an error. This is intuitive for most data types, but be careful
with maps:

iex> map = %{a: 1}
iex> ^map = %{a: 1}
%{a: 1}

• Click HERE to purchase this book now. discuss

Pattern Matching Basics • 7

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

iex> ^map = %{a: 1, b: 2}
** (MatchError) no match of right hand side value: %{a: 1, b: 2}

The map did not exactly equal the pinned value, so a MatchError was thrown.

You might be wondering what happens if you use a variable twice on the left
side of a match. This is not considered a pinned value, but it behaves very
similarly.

iex> {x, x} = {1, 1}
iex> x
1

iex> {x, x} = {1, 2}
** (MatchError) no match of right hand side value: {1, 2}

The duplicated variable must be equal in all positions of the match clause.
Otherwise, you’ll get a MatchError.

Now that you have the basics of pattern matching, let’s see how it can be
used to control the flow of a program.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

