
Extracted from:

From Ruby to Elixir
Unleash the Full Potential of Functional Programming

This PDF file contains pages extracted from From Ruby to Elixir, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

From Ruby to Elixir
Unleash the Full Potential of Functional Programming

Stephen Bussey

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-031-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—May 31, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Explore Elixir Processes
Processes are the foundation of concurrency in Elixir. They are small, easy
to spawn, and you can run as many of them as you have memory for—in
production tens to hundreds of thousands would be normal. You don’t need
to know much about the BEAM’s process architecture to use processes, but
the details really highlight how powerful they are.

We’re going to cover the basics of processes in this section, but we’ll also
cover some of the interesting details of the process architecture. You’ll learn
how to spawn a process and pass messages to it, and you’ll make an
infinitely-running process that responds to incoming messages. We’ll also go
over error isolation, memory isolation, and garbage collection.

Spawn a Process
Elixir makes it very easy to start a new process. The spawn/1 functions takes
a function and executes it inside of a new process. Let’s do that in IEx:

iex> self()
#PID<0.109.0>

iex> pid = spawn(fn -> IO.puts("Hello from #{inspect self()}") end)
Hello from #PID<0.112.0>
#PID<0.112.0>

iex> Process.alive?(pid)
false

We pass a function into spawn/1 that prints out some information about the
executing process. Your exact numbers will be different than mine, but notice
that the spawned function prints out as 0.112.0 but the originating process is
0.109.0. This is called a process ID (PID) and is one of the core data types in
Elixir. The difference in PIDs proves that the spawned function is actually
executing inside of a different process.

This spawned process would be useful if we wanted to fire off some asyn-
chronous code, but it’s not really that useful right now. We need to be able
to send messages into the process and receive responses from it in order to
turn it into a useful tool. The receive function lets us do just that. And in order
to send a message to the process, we’ll use the send function.

Type this code into your IEx session:

iex> pid = spawn(fn ->
receive do

:hello -> IO.puts("Hello World")
{:hello, name} -> IO.puts("Hello #{name}")

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

end
end)

iex> Process.alive?(pid)
true

iex> send(pid, :hello)
Hello World
:hello

iex> Process.alive?(pid)
false

We were able to process the message :hello and see that the correct output
was printed. If you try the example again with send(pid, {:hello, "Your Name"}), you
will see that it responds with a different message. The receive function uses
pattern matching to determine which code to run, just like you’re already
familiar with.

We aren’t going to do the exercise here, but if you wanted to receive a response
from the spawned server, you would send back to the originating process. This
requires you to pass the PID of the current process as part of the message,
and then to receive a response. That’s pretty cumbersome, but you’ll see how
GenServer makes this very easy in the next main section.

Our process is no longer alive after a single message. Let’s make it process
messages forever.

Process Messages Forever
Recursion is very useful to create infinite loops. Usually an infinite loop would
be a bad thing, but it’s totally fine when used in a controlled way.

Create lib/examples/spawn/infinite.ex and add the following code:

elixir_examples/lib/examples/spawn/infinite.ex
defmodule Examples.Spawn.Infinite do

def start do
spawn(& loop/0)

end

defp loop do
receive do
{:add, a, b} ->

IO.puts(a + b)
loop()➤

:memory ->
{:memory, bytes} = Process.info(self(), :memory)
IO.puts("I am using #{bytes} bytes")
loop()➤

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbelixir/code/elixir_examples/lib/examples/spawn/infinite.ex
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

:crash ->
raise "I crashed"

:bye ->
IO.puts("Goodbye")

end
end

end

The start/0 function uses spawn/1 to kick off our looped process. The loop function
is very simple, it is just a receive block with a variety of messages handled.
For all messages except :bye, the loop/0 function is called as the last thing the
function does. This creates a recursive loop that will handle messages forever.
Let’s try it out:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()

iex> send(pid, :memory)
I am using 2608 bytes

iex> send(pid, {:add, 1, 2})
3

iex> send(pid, {:add, 50, 50})
100

You could extend this exercise by turning loop/0 into loop/1 and keeping tracking
of state for each message. If you did this, you would have a server that changes
state based on messages it has received from the outside world. This is a
pretty small change, but is still pretty cumbersome. Don’t worry, GenServer
will make this easy for us too.

Before we get into GenServer, let’s look at some of the interesting details of
how processes are implemented. These may seem unimportant at first, but
they drastically shape the runtime characteristics of an Elixir application.

Error Isolation in Processes
There’s an argument to be made that the genius of the BEAM is not its parallel
execution ability, but rather its ability to isolate errors. Let’s put that into
perspective: if two requests come into a web server at the same time, and one
of the requests crashes, then we would not expect the other request to also
crash.

Let’s spawn two processes and then crash one of them to create a basic
demonstration:

$ iex -S mix
iex> p1 = Examples.Spawn.Infinite.start()

• Click HERE to purchase this book now. discuss

Explore Elixir Processes • 5

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

#PID<0.161.0>

iex> p2 = Examples.Spawn.Infinite.start()
#PID<0.163.0>

iex> send(p1, :crash)
[error] Process #PID<0.161.0> raised an exception
** (RuntimeError) I crashed

iex> [Process.alive?(p1), Process.alive?(p2)]
[false, true]

This is a simple example, but it serves to demonstrate that we did not have
to do anything to isolate this error. In fact, it would not be possible to crash
one of these processes from the other. Of course, an event like a database
failure is going to cause errors all over an application, but that would be due
to an external factor rather than an internal one.

It’s easy to take error isolation for granted. Clever programming from frame-
works in languages that don’t provide error isolation will make it feel like
there’s isolation, but a guarantee from the virtual machine runtime is
another level of confidence.

Process Memory Architecture
Each process in Elixir has its own memory space. This consists of a heap and
a stack that grow towards each other. Eventually, if they are unable to grow,
the BEAM will allocate more memory to the process.

Processes start off with a fairly small amount of memory. On my computer,
I see 2608 bytes taken up for a brand new process:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()
iex> Process.info(pid, :memory)
{:memory, 2608}

Process.info(pid) is a very useful source of information about any process that is
actively running. It tells you things like heap size, stack size, reductions
(which roughly equate to CPU usage), and the number of unprocessed mes-
sages. Here, we used Process.info/2 to return a focused version of the available
data.

Data in Elixir is copied between processes. So if you send a message to a
process, that memory will be duplicated and then passed as a message. This
has benefits for small bits of data, but it would be a bit of waste to copy every
single message between processes. Elixir has a little trick of its sleeve to
optimize copies.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

Elixir uses a binary heap3 to globally store large (> 64 bytes) binary data. This
binary heap is shared between processes and uses reference counting to
determine when the memory can be cleaned up. Because the BEAM uses
immutable data, you don’t need to worry about this causing bugs in your
application. The memory here is safe to use and can be referenced by multiple
processes without fear.

The small memory size of processes is part of what makes them very easy to
spawn and destroy. But, sometimes you will find yourself debugging a problem
where too much memory is being used. So, let’s cover how garbage collection
works.

Garbage Collection
Garbage collection isn’t fun, right? Actually, the BEAM’s garbage collector is
quite interesting. I wrote about this in fairly deep detail in Real-Time Phoenix
[Bus20], but we’ll cover much less in this book.

Because each process in Elixir has its own memory heap and stack, each
process performs its own garbage collection. The binary heap that was men-
tioned in the last section is globally shared, so there is a global collection
process to handle it. However, it’s relatively lightweight because the binary
heap uses reference-counted binaries.

Each garbage collection process runs fast because it deals with less memory,
and it happens on a cycle according to how much that process is churning
data. If the process is very active, or is running out of memory, then the pro-
cess will experience a collection cycle more often than a process that isn’t
doing much.

There is a hidden danger that you have to be cautious of, though. Long-lived
processes can run into a situation where the amount of memory they are
taking up is more than they need, but they won’t undergo a garbage collection
cycle because they aren’t active enough to kick one off. In this situation, a
process can take up more memory than it needs for a long period of time.
Let’s create an artificial example:

$ iex -S mix
iex> pid = Examples.Spawn.Infinite.start()
iex> Enum.each(1..1000, & send(pid, {:add, &1, &1}))

iex> send(pid, :memory)
I am using 62816 bytes

3. https://www.erlang.org/doc/apps/erts/garbagecollection#binary-heap

• Click HERE to purchase this book now. discuss

Explore Elixir Processes • 7

https://www.erlang.org/doc/apps/erts/garbagecollection#binary-heap
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

Your numbers may vary here, but you should expect to see that this number
is higher than the 2.6 KB that it started out as. This doesn’t immediately
make sense because our process has no state, and it has processed all of its
messages. So, why is it taking up thirty times more memory?

The issue here is that the process mailbox lives on the heap of the process.
As we inundated it with messages, it had to allocate more memory to hold
those messages. The garbage collection process only occurs based on running
out of memory or processing a given number of reductions—neither of which
are occurring.

We can manually trigger garbage collection with :erlang.garbage_collect(pid). Once
you do this and query the process memory, you will see that it’s back to its
starting size.

iex> :erlang.garbage_collect(pid)
iex> send(pid, :memory)
I am using 2608 bytes

The number of long-lived processes is usually small enough that this doesn’t
matter. But, if it becomes a problem, then look at the ERL_FULLSWEEP_AFTER
system variable and set it to a number like 20. This causes garbage collection
to run more frequently—at the cost of a bit more CPU. This flag is enabled
on every single production system I’ve worked on, and it has never caused
problems for me.

There’s another option to prevent memory bloat. You can put individual pro-
cesses into a hibernation state. A hibernating process has its memory reduced
as much as possible. But when the process receives a message, it will incur
a cost to exit the hibernation state and handle the message. GenServer4 has
a hibernate_after option that will automatically enter hibernation when the
GenServer is idle.

Both techniques are important to know about, but you likely won’t need to
use them for some time. Frameworks like Phoenix use hibernation with sane
defaults so that you often don’t need to think about it.

Now that you have the basics of processes down, let’s take a look at how Elixir
makes them easy with GenServer.

4. https://hexdocs.pm/elixir/GenServer.html

• 8

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/elixir/GenServer.html
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

