
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Elixir has emerged over the past few years as a “most loved” language1 that’s
used by many businesses and hobbyists to write reliable software systems.
Many Elixirists consider it their superpower of productivity and stability.
Hopefully, by the end of this book, you’ll see why this is the case.

It’s hard to learn a new language, harder to become production-ready with
it, and even harder still to convince your boss to actually let you use the new
language in production. The juice is worth the squeeze, though. Elixir opens
a new way of thinking about programming that carries over into other lan-
guages as well.

Your knowledge of Ruby influences how you view and write in other program-
ming languages. Similarly, as you develop an understanding of Elixir, it will
also influence how you think when writing code. Even if you were to never
use Elixir in production, you’ll still benefit and grow as a programmer.

We’ll start this chapter by taking a look at what makes Ruby such a great
language. You’ll see why Elixir is a similarly great language and why its future
is bright. You’ll learn about the technology that Elixir is built on top of: Erlang,
OTP, and the BEAM. Finally, you’ll write a bit of Elixir code and run it on
your computer.

Before we talk about Elixir, let’s talk about Ruby.

The Joy of Ruby
Some people have pitted Elixir as being “against Ruby,” but that’s not the
case. When you learn a new language, it doesn’t have to come with a reduced
respect for what you used in the past. It also doesn’t mean that you can’t use
that language anymore. Especially with the rise of microservices, it’s possible
that you can program in Ruby and Elixir at the same company!

Ruby is a language founded with joy at its core, which leads to several non-
technical aspects that make it an appealing language: a healthy foundational
philosophy, a strong community, and continual improvement. Let’s go over
each point and how it benefits Ruby.

Solid Foundations
Yukihiro Matsumoto (Matz) created Ruby with a philosophy that programmers
who use it should feel joy. To this day, his philosophy influences the design
of the language, the way that libraries are built, and everything about Ruby.

1. https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted

• Click HERE to purchase this book now. discuss

https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

The happiness of programmers is just as important as what those program-
mers create because happiness affects all aspects of one’s life. Businesses
benefit from this as well. A happy programmer is more likely to be happy with
their job, stay with their company, and create a better product.

A Strong Community
Matz’s philosophy is felt in the community and is captured in the phrase “Matz
is nice, so we are nice” or MINSWAN.2 The Ruby community is welcoming and
helpful, which is critical for the adoption of a language over time. New developers
won’t want to learn a language if they are pushed away due to negativity.

Another strength of the Ruby community is a culture of testing. This might be
obvious to people who have spent a lot of time with Ruby, but it’s certainly not
true in all language communities. Having a culture of testing creates better
libraries and applications. This testing culture contributes to joy over time.

Continual Improvement
Ruby isn’t a static language. The language doesn’t push many breaking
changes (this would certainly not elicit joy), but it has continued to evolve.
Many smart people and companies deliver performance improvements,
increased security, and even large projects like type checking.

Plus, Ruby’s major libraries have continued to innovate over the years. Ruby
on Rails 73 is the best release of Rails yet. It continues to set a high bar for
programmer productivity and happiness.

The continued improvements to Ruby guarantee relevance for Ruby developers.
Ruby isn’t going anywhere, and it isn’t a goal of this book to try to replace Ruby
with Elixir.

Next, let’s explore a bit of what makes Elixir special.

The Case for Elixir
Anytime you pick a new technology, you’ll have to make a case for it. The first
consideration is your personal decision of whether you want to spend time
learning the language. Next, you’ll need to bring it to your professional peers
and get their buy-in that they also want to spend time learning it. Finally,
your business will need to make the case of whether they want to invest in

2. https://en.wiktionary.org/wiki/MINASWAN
3. https://rubyonrails.org/

• 4

• Click HERE to purchase this book now. discuss

https://en.wiktionary.org/wiki/MINASWAN
https://rubyonrails.org/
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

it. Even if you’re just a hobbyist who is curious about Elixir, you still need to
justify learning it over other languages.

The technical aspects of a language are obviously important in these decisions,
but the nontechnical aspects are just as important. In the previous section,
we spent a lot of time talking about the nontechnical aspects that make Ruby
a joy to use and learn.

We’ll briefly cover a few nontechnical strengths of Elixir, but we’ll also look
at why the technology itself is appealing.

Nontechnical Strengths
Elixir is small and relatively new. These are two things that you’ll be working
against when you make the case for it. However, Elixir finds strength in its
community, innovation, and philosophy.

Close-Knit Community
The Elixir Forums4 and Elixir Slack5 are a wealth of knowledge and
friendly faces. It’s rare that a question goes unanswered in these places
because the community shows up to help.

Culture of Testing
Elixir, like Ruby, has a healthy testing culture that permeates every layer
of the technical stack. It’s rare to find untested libraries.

Language Design Philosophy
Elixir doesn’t have a vocalized philosophy like Ruby does, but it’s clear
that it’s influenced by other languages. Elixir’s creator, José Valim6, has
talked about being inspired by Ruby, Clojure, and Erlang. In fact, José
was on the Rails Core Team, as well as the team that created the popular
Devise library.

Elixir’s language syntax is pleasant to use and elicits joy, much like
Ruby’s. For example, the Elixir core team works hard to avoid breaking
changes—you can usually upgrade Elixir versions without too much work.
That creates joy when upgrading from one version to another—an other-
wise notoriously painful task.

4. https://elixirforum.com
5. https://elixir-slack.community/
6. https://twitter.com/josevalim

• Click HERE to purchase this book now. discuss

The Case for Elixir • 5

https://elixirforum.com
https://elixir-slack.community/
https://twitter.com/josevalim
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

Continual Innovation
Over the past few years, a ton of innovative features and libraries have
been added to the Elixir ecosystem. These have been developed by the
core team but also by private companies developing edge-pushing libraries.

The most well-known innovations in this space are Phoenix LiveView,7

machine learning with Nx,8 and hardware development with Nerves.9

A healthy foundation wouldn’t matter if the technical aspects weren’t also strong.
Let’s look at why Elixir is appealing for modern application development.

A Solid Foundation with the BEAM
Elixir is a functional programming language that’s built on top of an almost
forty-year-old foundation, the BEAM (Bogdan/Björn’s Erlang Abstract
Machine). We’ll be going into what that is in the next section, but for now the
important takeaway is that it’s a unique runtime that empowers parallelism
and fault tolerance in a way that isn’t common in other languages.

The combination of fault tolerance and isolation is a premier strength of Elixir
and the BEAM. Errors are going to happen, whether they are bugs, service
outages, or anything in between. The BEAM provides ways for us to determine
how errors should affect our application. Do you want an error to bring down
the whole thing? Do you want an error to only affect the request that it was
serving? Do you want to restart a piece of your system when an error occurs?
Select the failure mode of your application so your application behaves pre-
dictably when things go wrong.

It’s human nature to focus on the happy path. When evaluating a program-
ming language, that would mean evaluating how you code in it, the libraries
you use, and how data flows through your system. But the unhappy path is
just as (or sometimes more!) important. Elixir and the BEAM provide a core
foundation for programming the unhappy path you want, rather than taking
whatever you get.

Technical Benefits
Elixir applications can fully utilize their host CPU cores (parallelism) without
having to write complex code. It’s possible for other languages to achieve this
same level of parallelism, but the unique aspect is how simple it is to achieve
this with Elixir—it’s nearly free.

7. https://github.com/phoenixframework/phoenix_live_view
8. https://github.com/elixir-nx
9. https://www.nerves-project.org/

• 6

• Click HERE to purchase this book now. discuss

https://github.com/phoenixframework/phoenix_live_view
https://github.com/elixir-nx
https://www.nerves-project.org/
http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

It’s easy to overlook the impact of this. If your web application is served on a
4-core server and you increase it to an 8-core server, you’ll likely get twice
the throughput out of it without making any changes. Despite it seeming like
it should be common in other languages, it’s not. Many languages (including
Ruby) become bound as the server size grows, and applications can’t utilize
all of their cores when that happens.

Parallelism is crucial for modern programming, but the opposite of parallelism
is just as important—serial code. Elixir provides excellent ways to control
when code executes in parallel and when it executes serially.

The combination of parallel and serial code gives you complete control over
your system runtime performance. This is unmatched in almost any other
programming language today. Elixir (and BEAM languages) are equipped with
these world-class capabilities out of the box.

Elixir is well-suited for building reliable, modern systems. This especially
applies to web systems, but Elixir can be used in hardware systems, commu-
nication systems, machine learning, and more. You’ll write more performant
systems that are cheaper to run when you use Elixir.

These are only a few of the technical benefits of Elixir. A lot of Elixir’s greatest
strengths come from its foundation with Erlang and the BEAM. Let’s dive into
what those are next.

• Click HERE to purchase this book now. discuss

The Case for Elixir • 7

http://pragprog.com/titles/sbelixir
http://forums.pragprog.com/forums/sbelixir

