
Extracted from:

Real-Time Phoenix
Build Highly Scalable Systems with Channels

This PDF file contains pages extracted from Real-Time Phoenix, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Real-Time Phoenix
Build Highly Scalable Systems with Channels

Stephen Bussey

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-719-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Real-time systems are all about getting data from the server to the user, or
vice versa, as quickly and efficiently as possible. A critical piece of a real-time
system is the communication layer that sits between the server and the user.
The user may be on a browser, a mobile app, or even another server. This
means that we want to pick a communication layer that can work well in a
variety of different circumstances, from high-latency mobile connections to
very fast connections.

In this book, we’ll use WebSockets as our communication layer; they form
the backbone of real-time web applications today. This may change as tech-
nology evolves over time, but it’s the best solution in the current technology
landscape. We’ll start building real-time applications in the next chapter, but
first we’re going to break down how WebSockets work. Understanding Web-
Sockets is crucial in order to build and deliver real-time applications to users.
We’ll use a “Hello, World!”-style Phoenix application to see the communication
of a WebSocket. Once this application is running, we’ll look at the different
components of a WebSocket to understand how they work.

You can build a real-time system without understanding all the different
layers, such as WebSockets, but lacking this knowledge may hurt you in the
long run. I remember shipping my first real-time Phoenix application where
I didn’t fully understand all the layers involved. My WebSockets weren’t able
to connect! I researched and realized that I needed to understand more about
WebSockets in order to get them working with my production load balancer
and to reduce my application’s memory usage. Learning more about the dif-
ferent layers allowed me to ensure each was working properly.

Let’s look at what a WebSocket is and then move into our “Hello WebSocket”
application.

Why WebSockets?
It used to be difficult to write real-time systems due to technology limitations
at the communication layer. Developers of real-time systems had to make
trade-offs between performance, cost, and maintenance; the complicated
techniques used often pushed browsers to the limit of their capabilities. Those
techniques were highly dependent on the particular web browser used. This
meant that a client would be working correctly in one browser but not work
in another.

The RFC for the WebSocket protocol emerged with the HTML5 spec in 2011
to solve the challenges of real-time web communication. It took a bit of time
for WebSockets to gain support, but they are now supported natively by all

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

major browsers and can be considered mature for application development.
We’ll be using WebSockets as the primary communication layer in this book
because of these strengths:

• WebSockets allow for efficient two-way data communication over a single
TCP connection. This helps to minimize message bandwidth and avoids
the overhead of creating frequent connections.

• WebSockets have strong support in Elixir with the cowboy web server.1

They map very well to the Erlang process model which helps to create
robust performance-focused applications.

• WebSockets originate with an HTTP request, which means that many
standard web technologies such as load balancers and proxies can be
used with them.

• WebSockets are able to stay at the edge of our Elixir application. We can
change out our communication layer in the future if a better technology
becomes available.

WebSockets are powerful. This is evident by the popular and successful appli-
cations built using them. Facebook Messenger2 uses WebSockets to send and
receive real-time chats from user clients, allowing Messenger chats to feel
snappy. Yahoo Finance3 uses WebSockets to power their real-time stock ticker
across global financial markets. Multiplayer games such as Slither4 are very
popular (not to mention fun!) and are powered completely via WebSockets.

I first dug into the nuts and bolts of WebSockets while developing systems
at SalesLoft,5 an enterprise software as a service (SaaS) company. We use
WebSockets to power many important features for our business users, such
as real-time notifications and live website information. We send hundreds of
millions of events over WebSockets each day.

Enough talk, though, it’s time for some action! We’ll use a small local Elixir
application that exposes a WebSocket in order to see how to connect a Web-
Socket and how data can be sent over it. You will use this technique to inspect
and debug our applications later in the book.

1. https://github.com/ninenines/cowboy
2. https://messenger.com
3. https://finance.yahoo.com
4. https://slither.io
5. https://salesloft.com

• 6

• Click HERE to purchase this book now. discuss

https://github.com/ninenines/cowboy
https://messenger.com
https://finance.yahoo.com
https://slither.io
https://salesloft.com
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

Connecting our First WebSocket
To get up and running quickly, we’re going to leverage Phoenix’s6 initial project
scaffold. This is a good time to go back to Introduction, on page ? in order
to make sure that Elixir and Phoenix are set up properly on your system.

We will use mix phx.new to create our first example. You will be prompted to
“fetch and install dependencies” during this process. Enter Y in order for the
project to be started without manual steps.

$ mix phx.new hello_sockets --no-ecto
* creating hello_sockets/config/config.exs
...
Fetch and install dependencies? [Yn] Y
...

We’ll need to perform one more step to get the sample WebSocket to load.
Let’s remove the comment on the socket line:

hello_sockets/assets/js/app.js
// Import local files
//
// Local files can be imported directly using relative paths, for example:
import socket from "./socket"

Run mix phx.server in the hello_sockets folder to start the server. If you get an
error when starting the server, double check that you are in the right folder
and that you do not already have a program running on port 4000.

Once started, you will see the program running on port 4000:

6. https://phoenixframework.org/

• Click HERE to purchase this book now. discuss

Connecting our First WebSocket • 7

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/app.js
https://phoenixframework.org/
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

$ mix phx.server
Compiling 12 files (.ex)
Generated hello_sockets app
[info] Running HelloSocketsWeb.Endpoint with cowboy 2.6.3 at 0.0.0.0:4000
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000

Webpack is watching the files…
...

We’ll use this basic WebSocket application in this chapter to observe how a
WebSocket connects and transmits data. It is important to poke around and
understand WebSockets so you can debug them more effectively in the future.
As you’re developing an application, you will spend a fair amount of time
looking at what data is being sent to and from the WebSocket.

WebSocket Protocol
WebSockets follow a formal protocol that is implemented by browsers and
servers. We will make use of several parts of the WebSocket protocol, but we
will not use the entire protocol. In this section, we’ll focus on the most basic
parts of the protocol. You’ll learn how to establish a connection, keep the
connection alive, send and receive data, and keep the WebSocket secure.

Using the WebSocket RFC

The RFC for the WebSocket Protocola doesn’t make for the most entertaining, or
lightest, reading. However, the RFC is highly valuable if you find yourself doing deep
debugging into a WebSocket implementation. In this chapter, we’ll use Chrome Dev-
Tools to inspect how a WebSocket works, but you may benefit from advanced features
listed in the RFC.

The RFC can be especially useful if you have extremely tight technical requirements
that are not met by the standard WebSocket implementation. However, the standard
implementation provided by Phoenix will work for nearly everyone.

a. https://tools.ietf.org/html/rfc6455

We’ll use Google Chrome’s7 DevTools to walk through the next example. Any
browser with the ability to inspect a WebSocket could be used, although each
browser’s DevTools vary in look and functionality. WebSockets are supported
by all major browsers,8 which means that you and your users will be able to
use WebSockets from any modern device.

7. https://www.google.com/chrome/
8. https://caniuse.com/#feat=websockets

• 8

• Click HERE to purchase this book now. discuss

https://tools.ietf.org/html/rfc6455
https://www.google.com/chrome/
https://caniuse.com/#feat=websockets
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

Establishing the Connection
Load the HelloSockets webpage by visiting http://localhost:4000. You will see the
default generated Phoenix start screen. What we want to see is hiding from
us, and we’ll use the DevTools to view it. You can open the DevTools via right-
click > Inspect on the webpage. You’ll see a variety of tabs, but we want to select
the “Network” tab. Once there, reload the webpage in order to capture the
connected WebSocket.

Chrome Network Tab Missing Connections

Chrome only shows requests since DevTools was opened. This can
lead to a lot of hair-pulling when you’re troubleshooting a problem.
Reload the webpage if you can’t locate your WebSocket connection.
Turning it off and on again always works, right?

Select the “WS” tab in order to only show WebSocket connections. Look for
the connection labeled websocket?token=undefined&vsn=2.0.0. You may see another
connected WebSocket because Phoenix comes with a developer code reloader
that operates over a WebSocket, but you can ignore that one. Once you click
into the connection, you will see something like this:

In this image, you can see a few things that reveal how a WebSocket connects.
The first is that there are request headers, response headers, and an HTTP
method (GET).

A WebSocket starts its life as a normal web request that becomes “upgraded”
to a WebSocket. We can see this if we use cURL on the WebSocket endpoint.
You’ll need several required headers to make this work. The easiest way to
generate the cURL request is to right-click the request labeled websock-
et?token=undefined&vsn=2.0.0 under the “name” column and then select the “copy
as cURL” option. This will copy a cURL request to a ws protocol URL. Next,

• Click HERE to purchase this book now. discuss

WebSocket Protocol • 9

http://localhost:4000
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

paste the cURL request into your favorite editor and replace ws:// with http://.
Run this request in your terminal with the -i flag added. You’ll end up with a
request that looks like this:

cURL command abbreviated, paste your copied command
Include all of the headers that came with the copied command
$ curl -i 'http://localhost:4000/socket/websocket?vsn=2.0.0' -H...
HTTP/1.1 101 Switching Protocols
connection: Upgrade
date: Fri, 12 Apr 2019 01:29:18 GMT
sec-websocket-accept: afAAVeJV/iyu1ZxFEE6HMzL0ha0=
server: Cowboy
upgrade: websocket

Our web request has received a 101 HTTP response from the server, which
indicates that the connection protocol changes from HTTP to a WebSocket.
WebSockets operate over a TCP socket using a special data protocol, with the
initial HTTP request ensuring that the connection is compatible with browsers
and server proxies. The same TCP socket that the HTTP connection request
went over becomes the data TCP socket after the upgrade—this allows Web-
Sockets to only use a single socket per connection. WebSockets were designed
for allowing browsers to connect to a TCP socket through HTTP, but it is
completely acceptable to use them in non-browser environments such as a
server or mobile client.

The following figure is a flow diagram of the WebSocket connection process.

To summarize, a WebSocket connection follows this request flow:

1. Initiate a GET HTTP(S) connection request to the WebSocket endpoint.
2. Receive a 101 or error from the server.
3. Upgrade the protocol to WebSocket if 101 is received.
4. Send/receive frames over the WebSocket connection.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

A connection cannot be upgraded with cURL, so we’ll move back to DevTools
for seeing the data exchange.

Sending and Receiving Data
When you opened the DevTools, you may have noticed a “Messages” tab. This
tab shows all messages that are sent to or received from the server. The
DevTools for our app looks like this:

You can ignore the error message for now; the important thing to note is that
a WebSocket is capable of sending messages (green background) and receiving
messages (white background). This two-way data transmission can happen
in both directions simultaneously. A connection which is capable of two-way
data transmission is called a full-duplex connection.

WebSockets transmit data through a data framing protocol.9 We can’t see it
with the DevTools, but it’s worth knowing this provides security benefits and
allows WebSocket connections to work properly through different networking
layers. These traits allow us to more confidently ship WebSocket-powered
applications into production.

The WebSocket protocol contains extensions that provide additional function-
ality. Extensions are requested by the client using the Sec-WebSocket-Extensions
request header. The server can optionally use any of the proposed extensions
and return the list of active extensions to the client in a response header
named Sec-WebSocket-Extensions. WebSocket data frames are not compressed by
default, but can be compressed by using the permessage-deflate extension. This
feature allows bandwidth to be reduced at the cost of processing power, which
is a benefit for some applications.

Staying Alive, Keep-alive
We have a WebSocket connection that is sending and receiving data, now we
have to ensure that the connection stays alive. A disconnected WebSocket is
unable to send or receive data. There are things we could do to provide some

9. https://tools.ietf.org/html/rfc6455#section-5

• Click HERE to purchase this book now. discuss

WebSocket Protocol • 11

https://tools.ietf.org/html/rfc6455#section-5
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

guarantees if a WebSocket disconnects, but we want to base our application
on a solid foundation.

The WebSocket protocol specifies Ping and Pong frames10 which can be used
to verify that a connection is still alive. These are optional, though, and you’ll
soon see that Phoenix doesn’t use them. Instead, clients send heartbeat-data
messages to the Phoenix Server they’re connected to every 30 seconds. The
Phoenix WebSocket process will close a connection if it doesn’t receive a ping
within a timeout period, with 60 seconds the default. With Phoenix, it is
possible to use a WebSocket ping control frame to keep the WebSocket con-
nection alive, but the official Phoenix client doesn’t use it.

A predictable heartbeat for the connection turns out to be very useful. A
connection can be dead but not closed properly; this causes the connection
to stay active on the server. A connection that is active but without a client
on the other side wouldn’t be sending a heartbeat, so it closes gracefully after
a short period of time.

It is useful that the client manages the heartbeat rather than the server. If the
server is in charge of sending pings to a client, then the server is aware of the
connectivity problem but cannot establish a new connection to the client. If a
connectivity problem is detected by the client via its ping request, the client can
quickly attempt to reconnect and establish the connection again.

10. https://tools.ietf.org/html/rfc6455#section-5.5.2

• 12

• Click HERE to purchase this book now. discuss

https://tools.ietf.org/html/rfc6455#section-5.5.2
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

