Extracted from:

Real-Time Phoenix
Build Highly Scalable Systems with Channels

This PDF file contains pages extracted from Real-Time Phoenix, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
Oogrammers

Real-Time Phoenix

Build Highly Scalable Systems
with Channels

Stephen Bussey

Series editor: Bruce A. Tate
Development editor: Jacquelyn Carter

Real-Time Phoenix
Build Highly Scalable Systems with Channels

Stephen Bussey

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Executive Editor: Dave Rankin

Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Sean Dennis

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-719-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Use Channels in a Cluster

It is critical to run multiple servers when you are deploying a production
application. Doing so provides benefits for scalability and error tolerance. For
example, the ability to double the number of servers in the event of higher
load is much more powerful than doubling the number of cores on the single
server. It can take a few minutes (or less!) to add more machines but could
take much longer to move the application to a different machine with more
cores. There may also be a time when a single machine is fully utilized, and
you cannot add more CPU cores or memory.

Elixir makes connecting a cluster of BEAM nodes very easy. However, we
have to ensure that we're building our application to run across multiple
nodes without error. Phoenix Channels handles a lot of this for us due to
PubSub being used for all message broadcasts, which we’ll look at next.

Connecting a Local Cluster

Let’s jump right in by starting a local Elixir node (instance of our application)
with a name:

$ iex --name server@l27.0.0.1 -S mix phx.server
[info] Access HelloSocketsWeb.Endpoint at http://localhost:4000
iex(server@l27.0.0.1)1>

We use the --name switch to specify a name for our node. You can see the name
on the input entry line; ours is located at server@127.0.0.1. Let’s start a second node:

$ iex --name remote@l27.0.0.1 -S mix

Interactive Elixir (1.6.6) - press Ctrl+C to exit (type h() ENTER for help)
iex(remote@l27.0.0.1)1> Node.list()

[1

We started a second node that doesn’t run a web server by starting mix instead
of mix phx.server. We used a different name, remote@127.0.0.1, which gives us two
nodes running on the same host domain. You can use Node.list/0 to view all
currently connected nodes and see that there are none. Let’s correct that:

iex(remote@l27.0.0.1)1> Node.list()

[]

iex(remote@l27.0.0.1)2> Node.connect(:"server@l27.0.0.1")
true

iex(remote@l27.0.0.1)3> Node.list()

[:"server@l27.0.0.1"]

We run Node.connect/1 from our remote node to connect to the server node. This
creates a connected cluster of nodes that can be verified by running Node.list/0

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

°6

again. Try running Node.list/0 on the server node; you will see it contains the
remote node name.

This is all that we have to do to take advantage of Phoenix PubSub’s standard
distribution strategy powered by pg2. We can broadcast a message from our
remote node, which is incapable of serving Sockets, and see it on a client that
is connected to a Socket on our main server. Let’s try this out:

First, connect to the ping topic to establish the connection.

$ wscat -c 'ws://localhost:4000/socket/websocket?vsn=2.0.0"

> [”1“, ||1||,||pingu, "phXJOin",{}]

< ["1","1","ping", "phx_reply",{"response":{},"status":"ok"}]
Next, broadcast a message from the remote node.

iex(r@l27)> HelloSocketsWeb.Endpoint.broadcast("ping", "request ping", %{})
1ok

Finally, you can see that the ping request made it to the client:
< [null,null, "ping","send ping",{"from node":"server@l27.0.0.1"}]

The node that sent the message to the client is server@127.0.0.1, but we sent
our broadcast from remote@127.0.0.1. This means that the message was distribut-
ed across the cluster and intercepted by the PingChannel on our server node.

This demo shows that we can have a message originate anywhere in our
cluster, and the message will make it to the client. This is critical for a cor-
rectly working application that runs on multiple servers, and we get it for
very low cost by using Phoenix PubSub.

In practice, our remote node would be serving Socket connections, and the entire
system would be placed behind a tool that balances connections between the
different servers. You could emulate this locally by changing the HTTP port in
the application configuration, then connecting to the new port with wscat.

hello_sockets/config/dev.exs
config :rhello sockets, HelloSocketsWeb.Endpoint,
http: [port: String.to integer(System.get env("PORT") || "4000")],

You can now start the remote server in HTTP serving mode by prepending
PORT=4001 to the command. You will need to restart the original server@127.0.0.1
server as well.

$ PORT=4001 iex --name remote@l27.0.0.1 -S mix phx.server

[info] Running Web.Endpoint with cowboy 2.6.3 at 0.0.0.0:4001 (http)

[info] Access Web.Endpoint at http://localhost:4001
iex(remote@l27.0.0.1)1>

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/config/dev.exs
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

Use Channels in a Cluster ® 7

You can experiment with sending messages between the different nodes to
confirm that they are delivered in either direction. You’'ll learn about cluster
deployments in greater detail in Chapter 11, Deploy Your Application to Pro-
duction, on page 7. R R

Channel distribution is very powerful and easy to get started with out-of-the-
box. However, there are some challenges with it, which we’ll explore next.

Challenges with Distributed Channels

Distribution provides immense benefits to the scalability of our application,
but it comes with costs as well. A distributed application has potential prob-
lems that a single-node application won’t experience. A single-node application
may be the right call in some circumstances, such as a small internal appli-
cation, but we often must deliver our applications to many users that require
the performance and stability that are provided by distribution.

Here are a few of the challenges that we’ll face when distributing our applica-
tion. These problems are not specific to Elixir—you would experience the
same problems when building a distributed system in any language.

e We cannot be sure that we have fully accurate knowledge of the state of
remote nodes at any given time. We can use techniques and algorithms
to reduce uncertainty, but not completely remove it.

e Messages may not be transmitted to a remote node as fast as we’'d expect,
or at all. It may be fairly rare for messages to be dropped completely, but
message delays are much more common.

e Writing high-quality tests becomes more complicated as we have to spin
up more complex scenarios to fully test our code. It is possible to write
tests in Elixir that spin up a local cluster to simulate different environ-
ments.

e Our clients may disconnect from a node and end up on a different node
with different internal state. We must accommodate this by having a
central source of truth that any node can reference; this is most commonly
a shared database.

The easiest principle to get started with is having a central source of truth
that all nodes can read from when a process, such as a Channel, starts. We
will use this technique throughout the book. The other challenges involve
using proven data structures and algorithms for key tasks of our distributed
application. In part II, you'll learn about Phoenix Tracker for distributed

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

°8

process tracking, and you have already learned about PubSub’s mesh
approach to message broadcasting.

Let’s look at different ways to customize Channel behavior. These exercises
get into a bit more code than we've seen so far, which makes them quite fun!

Customize Channel Behavior

A Phoenix Channel is backed by a GenServer that lets it receive messages and
store state. We can take advantage of this property of Channels to customize
the behavior of our Channel on a per-connection level. This allows us to build
flows that are not possible (or would be much more complex) with standard
message broadcasting, which can'’t easily send messages to a single client.

We can’t customize the behavior of Sockets as much due to their process
structure. We’ll focus our attention strictly on Channel-level customization
for these examples by walking through several different patterns that use
Phoenix.Socket.assign/3 and message sending.

Send a Recurring Message

We sometimes need to send data to a client in a periodic way. One use case
of this is to refresh an authentication token every few minutes to ensure that
a client always has a valid token. This is useful because it is possible to
overwhelm a server if all clients ask for a token at the same time.

Our Channel will send itself a message every five seconds by using Pro-
cess.send_after/3. This flow will be started when the Channel process initializes,
but it would be possible to start the flow in our handle_in callback as well, in
response to a client-initiated message.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

Customize Channel Behavior ® 9

First, add a new "recurring" Channel route to the AuthSocket module.

hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
channel "recurring", HelloSocketsWeb.RecurringChannel

This Channel route makes our new Channel available. Let’s create the Recur-
ringChannel.

hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
defmodule HelloSocketsWeb.RecurringChannel do
use Phoenix.Channel

@send after 5 000

def join(topic, payload, socket) do
schedule_send_token()
{:0k, socket}

end

defp schedule send token do
Process.send_after(self(), :send token, @send after)
end
end

We leverage our join callback in order to schedule a message to self() for five
seconds in the future. This starts a timer that will cause the message :send_token
to be delivered. Now, let’s define the :send_token message handler.

hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex

def handle_info(:send token, socket) do
schedule send token()
push(socket, "new token", %{token: new token(socket)})
{:noreply, socket}

end

defp new token(socket = %{assigns: %{user id: user id}}) do
Phoenix.Token.sign(socket, "salt identifier", user id)
end

We use handle_info/2, as we would in a standard GenServer, to handle the :send_token
message. The first thing we do is schedule another message so the flow will
run forever. We then use push/3 to send a newly signed Phoenix.Token to the
client.

The Socket.assigns.user_id property set in AuthSocket.connect/2 provides the user
information needed when we sign our token. Socket.assigns is a great way to
bridge the gap between the initial connection and ongoing business logic, as
it allows us to pass information that was initially provided in the connection
request to the Channel.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/auth_socket.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
http://media.pragprog.com/titles/sbsockets/code/hello_sockets/lib/hello_sockets_web/channels/recurring_channel.ex
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

°10

Now let’s add a subscription to RecurringChannel in our JavaScript:

hello_sockets/assets/js/socket.js
const recurringChannel = authSocket.channel("recurring")

recurringChannel.on("new token", (payload) => {
console.log("received new auth token", payload)

1)

recurringChannel.join()

We are using our JavaScript client to observe this example, as we previously
configured it to connect to the AuthSocket. Refresh your web page to see that
the client is receiving a new unique token every five seconds. You will see log

statements in your console, like this:

received new auth token
received new auth token
received new auth token
received new auth token

received new auth token

» {token:
» {token:
» {token:
» {token:
» {token:

"SFMyNTY .93QAAAACZAAEZGFOYWEBZAAGC2LnbmVkbgYAmxWNX20B.~_uA9Fo7pT1lr76FqXfOdNTV_Ve8A3_VA8adgrCnGAed"}
"SFMyNTY . g3QAAAACZAAEZGFOYWEBZAAGC2 LnbmVkbgYAJCmNX20B . h_L67yxPKUyJIGeuxYDYHFxVAORan3MISEXZGO150Qw" }
"SFMyNTY .93QAAAACZAAEZGFOYWEBZAAGC21nbmVkbgYArTyNX20B. _olX_bqfjpGG3eRh7u4LAzKEUAbh4mRHdFnGwzE81A0" }
"SFMyNTY . g3QAAAACZAAEZGFOYWEBZAAGC2 LnbmVkbg YANTCNX20B . W8079A4RcZ5RfGS—4HbS0Zw_cHQTKdgUNLgXJ_GIDoc"}
"SFMyNTY . g3QAAAACZAAEZGFOYWEBZAAGC2 LnbmVkbgYAv20NX20B.Dbp-1QI7MrZf00fNvdlpqoNfiBi-B81X-TZlJsoPLtA"}

This will continue forever because our Channel does not have any logic to
stop it. We are sending a message every five seconds for observation purposes,
but we would normally set this duration closer to the expiration time of our

token.

Let’s look at a more advanced Channel customization that intercepts outgoing

messages.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/hello_sockets/assets/js/socket.js
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

