
Extracted from:

Real-Time Phoenix
Build Highly Scalable Systems with Channels

This PDF file contains pages extracted from Real-Time Phoenix, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Real-Time Phoenix
Build Highly Scalable Systems with Channels

Stephen Bussey

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-719-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Render Real-Time HTML with Channels
There are two major real-time features of our store. The first is to mark a shoe
as released and to update all connected shoppers with the released shoe.
We’ll use HTML replacement for this feature by swapping out “coming soon”
with our size selector. This approach makes it easy to ensure that a user
interface looks the same before and after a real-time update occurs.

Adding the application’s real-time features is usually less work than the
other parts of writing the application due to Channel’s abstractions. In this
chapter, we’ll write a small amount of code compared to the size of the project
base that exists already. Real-time features are often added on top of other
features, so it does make sense that you’ll spend more time building the fea-
tures and less time enhancing them to be real-time.

Our front end currently isn’t connected to a Channel that could provide it
with real-time updates. To start, we’ll add a very simple Socket and Channel,
and then connect our storefront to it. We’ll leverage a Channel to send data
from the server to a client. We don’t need to add authentication because this
is a public feature that anyone can see. There is no user-sensitive data in
any of the Channels that we’ll build in this chapter. Let’s start by updating
our Endpoint with a new Socket.

sneakers_23/lib/sneakers_23_web/endpoint.ex
socket "/product_socket", Sneakers23Web.ProductSocket,

websocket: true,
longpoll: false

You can replace the existing UserSocket definition with this one. UserSocket is
one of the generated files that comes with Phoenix. You can optionally delete
the channels/user_socket.ex file now. Let’s define ProductSocket now.

sneakers_23/lib/sneakers_23_web/channels/product_socket.ex
defmodule Sneakers23Web.ProductSocket do

use Phoenix.Socket

Channels
channel "product:*", Sneakers23Web.ProductChannel

def connect(_params, socket, _connect_info) do
{:ok, socket}

end

def id(_socket), do: nil
end

This is a very standard Socket defined without any authentication, because the
feature is publicly accessible. Our ProductChannel will be equally simple for now.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/endpoint.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_socket.ex
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
defmodule Sneakers23Web.ProductChannel do

use Phoenix.Channel

alias Sneakers23Web.{Endpoint, ProductView}

def join("product:" <> _sku, %{}, socket) do
{:ok, socket}

end
end

We’re not doing anything exciting in this Channel yet. Let’s change that by
defining a broadcast function. This is a fairly interesting function because
we’re going to render our size selector HTML for a given product.

sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
def notify_product_released(product = %{id: id}) do

size_html = Phoenix.View.render_to_string(
ProductView,
"_sizes.html",
product: product

)

Endpoint.broadcast!("product:#{id}", "released", %{
size_html: size_html

})
end

This technique allows us to render full pages or templates from anywhere in
our Elixir application. This is a big advantage because all the template logic
lives in Elixir, rather than being duplicated in JavaScript. We should write a
test for this function.

sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
defmodule Sneakers23Web.ProductChannelTest doLine 1

use Sneakers23Web.ChannelCase, async: true-

alias Sneakers23Web.{Endpoint, ProductChannel}-

alias Sneakers23.Inventory.CompleteProduct-

5

describe "notify_product_released/1" do-

test "the size selector for the product is broadcast" do-

{inventory, _data} = Test.Factory.InventoryFactory.complete_products()-

[_, product] = CompleteProduct.get_complete_products(inventory)-

10

topic = "product:#{product.id}"-

Endpoint.subscribe(topic)-

ProductChannel.notify_product_released(product)-

-

assert_broadcast "released", %{size_html: html}15

assert html =~ "size-container__entry"-

Enum.each(product.items, fn item ->-

assert html =~ ~s(value="#{item.id}")-

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web/channels/product_channel.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23_web/channels/product_channel_test.exs
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

end)-

end20

end-

end-

Our test subscribes to the notified topic, on line 12, so that any broadcasted
messages will be received by the test process. This lets assert_broadcast check
that the right message was broadcast. On line 18, our test ensures that each
item of the product is accounted for in the HTML.

This function will be called whenever our item is released, which happens in
the Inventory context. We’ll use our Sneakers23Web module as our web context
and will define a function that delegates to the ProductChannel. Elixir gives us a
built-in way to do this.

sneakers_23/lib/sneakers_23_web.ex
defdelegate notify_product_released(product),

to: Sneakers23Web.ProductChannel

The defdelegate macro1 is incredibly useful for building a context module because
it lets you separate implementation from exposure in a very quick and easy
way. We now have to use this delegate function in our Inventory context.
Without it, a product release event will not be broadcast to connected clients.
Add the following test at the end of the existing describe block.

sneakers_23/test/sneakers_23/inventory_test.exs
test "the update is sent to the client", %{test: test_name} do

{_, %{p1: p1}} = Test.Factory.InventoryFactory.complete_products()
{:ok, pid} = Server.start_link(name: test_name, loader_mod: DatabaseLoader)
Sneakers23Web.Endpoint.subscribe("product:#{p1.id}")

Inventory.mark_product_released!(p1.id, pid: pid)
assert_received %Phoenix.Socket.Broadcast{event: "released"}

end

You’ll see this test fails when you run mix test. This is because the Inventory.mark_
product_released!/2 function doesn’t call notify_product_released/1. Let’s fix that now.

sneakers_23/lib/sneakers_23/inventory.ex
def mark_product_released!(id), do: mark_product_released!(id, [])
def mark_product_released!(product_id, opts) do

pid = Keyword.get(opts, :pid, __MODULE__)

%{id: id} = Store.mark_product_released!(product_id)
{:ok, inventory} = Server.mark_product_released!(pid, id)
{:ok, product} = CompleteProduct.get_product_by_id(inventory, id)
Sneakers23Web.notify_product_released(product)

:ok

1. https://hexdocs.pm/elixir/Kernel.html#defdelegate/2

• Click HERE to purchase this book now. discuss

Render Real-Time HTML with Channels • 7

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23_web.ex
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/test/sneakers_23/inventory_test.exs
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/lib/sneakers_23/inventory.ex
https://hexdocs.pm/elixir/Kernel.html#defdelegate/2
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

end

You can use default options in the function definition, like mark_product_released!(prod-
uct_id, opts \\ []), instead of writing two separate function definitions. However,
this book will often omit that type of definition.

All of the tests will now pass. This means that the back end is fully working.
The Inventory context provides a function that marks the product as released
in the database, changes it locally in the Inventory.Server process, then pushes
the new state to any connected clients.

Now that our back end is configured, let’s connect our front end by using the
Phoenix Channel JavaScript client. Our strategy will be to grab the data-product-
id attributes off of our HTML DOM elements and then connect to a Channel
per matching product ID.

sneakers_23/assets/js/app.js
import css from "../css/app.css"
import { productSocket } from "./socket"
import dom from './dom'

const productIds = dom.getProductIds()

if (productIds.length > 0) {
productSocket.connect()
productIds.forEach((id) => setupProductChannel(productSocket, id))

}

function setupProductChannel(socket, productId) {
const productChannel = socket.channel(`product:${productId}`)
productChannel.join()

.receive("error", () => {
console.error("Channel join failed")

})
}

This isn’t a runnable example yet because we need to define our dom.js and
socket.js files. However, the flow that we’ll follow is complete. We’ll soon add
additional setup operations into setupProductChannel/1, which is why that function
ends without closing.

sneakers_23/assets/js/socket.js
import { Socket } from "phoenix"

export const productSocket = new Socket("/product_socket")

This file simply makes the productSocket available for import. It’s a good idea to
keep the code separated with exported modules to help increase the focus of
a particular file, even if there’s no logic in the file now. It also gives us a place

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/app.js
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/socket.js
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

to add more Socket-specific logic in the future, if needed. We still need to
define our DOM operations.

sneakers_23/assets/js/dom.js
const dom = {}

function getProductIds() {
const products = document.querySelectorAll('.product-listing')
return Array.from(products).map((el) => el.dataset.productId)

}

dom.getProductIds = getProductIds

export default dom

This function will grab the matching .product-listing elements and return each pro-
ductId attribute. At this point, everything is complete for our Socket to connect.
Try it out by starting mix phx.server and visiting http://localhost:4000. You should see
a Socket request in the “Network” tab as well as Channel join messages for
product:1 and product:2. We’re ready to wire up our product release message.

Start your server with iex -Smix phx.server so you can trigger the release message.
Do so like this:

$ iex -S mix phx.server
iex(1)> {:ok, products} = Sneakers23.Inventory.get_complete_products()
iex(2)> List.last(products) |> Sneakers23Web.notify_product_released()
:ok

You can run this as many times as you want because it doesn’t modify data.
Try to watch the network message tab while you execute it. You should see
the "released" message come through with an HTML payload. If you don’t see
it, make sure that you’re inspecting the product_socket connection and not the
live_reload connection.

Our front end needs to listen for this event in order to display the HTML.

sneakers_23/assets/js/app.js
function setupProductChannel(socket, productId) {

const productChannel = socket.channel(`product:${productId}`)
productChannel.join()

.receive("error", () => {
console.error("Channel join failed")

})

productChannel.on('released', ({ size_html }) => {
dom.replaceProductComingSoon(productId, size_html)

})
}

• Click HERE to purchase this book now. discuss

Render Real-Time HTML with Channels • 9

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/dom.js
http://localhost:4000
http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/app.js
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

Our setup function is now adding a handler for the "released" event from the
Channel. When the event is received, the DOM elements will be replaced with the
new HTML. We’ll add that function into our dom module, above the bottom export.

sneakers_23/assets/js/dom.js
function replaceProductComingSoon(productId, sizeHtml) {

const name = `.product-soon-${productId}`
const productSoonEls = document.querySelectorAll(name)

productSoonEls.forEach((el) => {
const fragment = document.createRange()

.createContextualFragment(sizeHtml)
el.replaceWith(fragment)

})
}

dom.replaceProductComingSoon = replaceProductComingSoon

We’re not using jQuery or a similar library in this project. If we were, we could
replace this HTML with something a bit simpler. This function lets the DOM
turn HTML into the appropriate node types, and then swaps out the original
element for the new node.

This is one of the more exciting parts of the demo! Our first real-time message
is working end-to-end. Trigger notify_product_released/1 in the console when you
have the page loaded. You will see the “coming soon” text instantly replaced
by the shoe size selector, complete with the right colors. Type the following
commands into your terminal.

$ mix ecto.reset && mix run -e "Sneakers23Mock.Seeds.seed!()"
$ iex -S mix phx.server
iex(1)> Sneakers23.Inventory.mark_product_released!(1)
iex(2)> Sneakers23.Inventory.mark_product_released!(2)

Take a moment to commit all of your current changes. The feature to release
our product is fully implemented. This is a great time to make sure that you
fully understand the code powering Sneakers23.Inventory.mark_product_released!/1
before moving on.

Next, you will implement another real-time feature in JavaScript, without
HTML. This provides some variety in the way that you implement real-time
features.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sbsockets/code/sneakers_23/assets/js/dom.js
http://pragprog.com/titles/sbsockets
http://forums.pragprog.com/forums/sbsockets

