
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Create a Channel
Okay, let’s rethink. We want our image producer to run in a new coroutine,
but we need its output in the original coroutine where the flow is being col-
lected.

If we were launching a coroutine to generate a single value, we’d solve that
problem with the async() builder. It returns a Deferred result, letting the new
coroutine pass a value back to its creator.

But an async() coroutine’s await() function waits for the entire task to finish,
before providing a single result. That’s not what we need here. Our image
producer is going to generate an ongoing stream of data, so we don’t want to
wait for its completion. Instead, we need a tool that will let us send a series
of values back to the caller, while both tasks continue running.

launch {…}

coroutine

Channel

What we’re looking for is a Channel.

Let’s make a simple program where we can see it in action. We’ll need two
coroutines—a sender and a receiver. To send our values, we’ll create a new
background coroutine with launch(). Meanwhile, our starting coroutine—the
one that runs our suspending main() function—can play the role of the
receiver.

channels/v1/src/main/kotlin/com/example/channels/ChannelsApplication.kt
suspend fun main() = coroutineScope {

val channel = Channel<Char>()➤

launch { // sender
for (outgoingChar in "Hi!") {
println("Sending '$outgoingChar'…")
channel.send(outgoingChar)➤

delay(100)
}

}

repeat(3) { // receiver
val incomingChar = channel.receive()➤

println("Received '$incomingChar'")
}

}

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sckotlin/code/channels%2Fv1%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fchannels%2FChannelsApplication.kt
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Communicate, Don’t Mutate

When you need to share data between tasks, use a Channel instead
of a shared variable or mutable data structure. Channels are safe
for concurrent use by many different coroutines, and unlock many
new ways to organize your code.

Learn to Communicate
The send() and receive() operations are both suspending functions, and the
simple channel we’ve created here will act as a handoff point between our
two coroutines. When the sender calls send(), it waits at the meeting point for
the receiver to arrive—and when the receiver calls receive(), it does the same
to wait for the sender. Once both coroutines have arrived, a value is passed
from sender to receiver, and the program continues.

Did you run the code yet? The output looks like this.

Sending 'H'…
Received 'H'
Sending 'i'…
Received 'i'
Sending '!'…
Received '!'

It’s easy to see how the values are being passed between the two coroutines,
as each task continues with its own work.

So what have we gained that we couldn’t do with a flow? Multitasking! Don’t
forget, a flow on its own is just a single task. With two communicating
coroutines, we can now do two things at once.

If flows are like the multivalued equivalent of suspending functions, it can
sometimes be helpful to think of a Channel as the multivalued equivalent of a
Deferred. In fact, there’s even a produce() coroutine builder that will create and
return its own Channel, similar to how async() returns a Deferred. We could have
used it in our program just now, but we’ll leave it as-is for the time being—our
goal is to understand the moving parts, not hide them.

Retrieve itLaunch itCode it

Deferredscope.async()suspend funOne value

Channelscope.produce(), or flow.produceIn(scope)flow()Many values

This comparison will help you choose the right tool, but it’s not an exact
parallel, and it won’t hold up to scrutiny in every situation.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Close a Channel
Our simple channel arranged a face-to-face meeting between our coroutines,
but that doesn’t always have to be the case. A channel can also include its
own buffer capacity, allowing it to accept items immediately from the sender,
and hold onto them until the receiver arrives. We’ll talk a bit more about this
when we introduce the flow buffer() operator later on.

If the channel holds data, what happens to those waiting messages when the
receiver stops receiving? For some programs, the answer is easy—nothing.
When both the sender and receiver have gone away, the channel—and any
data it might have been holding onto—can be garbage collected like any other
object or collection. Channels themselves don’t hold resources, and so they
don’t necessarily need to be manually cleaned up after use.

But even if the channel itself doesn’t need cleaning up, the coroutine it’s
connected to might! If our sender coroutine fails or finishes, we don’t want
our receiver to continue waiting for messages that will never come. The
receiver might even have its own cleanup code that it needs to run. That’s
why the sender has access to an additional close() function, which will let any
receiving code know that it should stop waiting. Once a channel is closed, it
can’t be used again.

Just Looking Out For You

On its own, a channel doesn’t need closing. The close() and cancel()
functions are there to help you manage the other tasks and
resources that are using the channel.

In our example, we knew how many items to expect, and we just called receive()
the correct number of times before stopping. Let’s change that, and have our
sender use close() to signal the end of the stream.

channels/v2/src/main/kotlin/com/example/channels/ChannelsApplication.kt
suspend fun main() = coroutineScope {

val channel = Channel<Char>()

launch { // sender
for (outgoingChar in "Hi!") {
println("Sending '$outgoingChar'…")
channel.send(outgoingChar)
delay(100)

}
channel.close()➤

}

for (incomingChar in channel) { // receiver➤

println("Received '$incomingChar'")

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/sckotlin/code/channels%2Fv2%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fchannels%2FChannelsApplication.kt
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

}
println("Done!")

}

Now that our stream of characters has an end, we can replace our three
explicit receive() calls with a simple for loop. Channels have a special suspending
iterator, so this loop will pause each time it needs to wait for an item. When
the sender closes the channel, the loop will come to an end.

End with an Error
Like an async() coroutine’s Deferred result, a Channel can deliver an error to its
consumer. That’s done by passing an exception to the close() function.

Trying to receive() more items from a failed channel will rethrow the original
error. But just as you saw with async() and await(), this error handling mecha-
nism will often be superseded by the rules of structured concurrency.
Depending on the way you’ve grouped your coroutines, it’s likely that an
unhandled error in the producer task will cause the consumer to be cancelled
before it ever sees that the channel has been closed.

Closed, Cancelled, or Crashed?
There’s one final way a channel can be marked as inactive, and that’s if the
receiver coroutine calls cancel(). This function exists to let the sender know it
should stop sending more values—and unlike close(), it will also discard any
item’s that haven’t yet been delivered.

Close That Message

You can send any object you like via a Channel. So what if the
messages themselves are closeable resources? The optional onUn-
deliveredElement handler lets you run cleanup code on in-flight
messages when the receiver goes away. Check the docs for details.

That’s three different ways to close a channel, so let’s recap and compare.

• As the sender, call close() with no arguments to signal the end of the data.
Calling send() after this is an error, but items that have already been sent
will still make it to the receiver. Once everything’s delivered, iterator-
backed loops complete normally, while manual calls to receive() throw an
error.

• As the sender, pass an exception to close() to signal that something went
wrong while producing the data. This has just two key differences from
a normal channel closure. First, iterator-backed receiver loops will end
with an error, instead of terminating normally. Second, explicit calls to

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

send() and receive() will throw the exception you provided, instead of a
generic ClosedSendChannelException.

• As the receiver, call cancel() to signal that you don’t want to receive any
more items. All in-flight items are discarded—there’s nowhere for them
to go. Both sender and receiver will get a CancellationException if they keep
trying to use the channel.

Be Careful with Cancelled Channels

As you learned in Chapter 6, Cooperate with Cancellation, on page
?, sending cancellation signals between coroutines can cause
some unexpected problems. Take care if you think you might
encounter a cancelled channel in a non-cancelled coroutine.

If that sounds like a lot of errors, don’t panic! There are alternative functions,
such as trySend() and tryReceive(), for situations where closed channels are an
expected part of your program’s normal operation.

• Click HERE to purchase this book now. discuss

• 7

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

