s

atic
ogrammers

Kotlin Coroutine
Confidence

Untangle Your Async,
Ship Safety at Speed

Sam Cooper
edited by Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

Introduction

For as long as I've been writing code, programming has been a tale of two
styles.

One is the undisputed heavyweight champion—the original programming
paradigm we all know and love. It's sequential. It's synchronous. It’s struc-
tured. It lays out its statements in a clear and logical parade of loops, function
calls, and conditionals.

In the other corner is the lightweight challenger. Zipping from thread to thread
with freedom and agility, the callbacks and continuations of asynchronous
code weave a dancing web that juggles inputs, outputs, and user interactions
with unmatched efficiency.

Asynchronous programming has long held the advantage when it comes to
responsive user interfaces and high throughput. But its stilted stitched-
together style often falls far short of the ergonomic control flow, resource
management, and error handling that have earned synchronous programming
its unassailable spot at the top.

So for years, the two have been locked in a stalemate.

Today, old-fashioned synchronous programming styles are staging a comeback.
More and more languages have begun introducing features and frameworks
that bridge the gap, letting us write clear and sequential programs that execute
with the speed and efficiency of asynchronous code.

Kotlin’s coroutines are part of this renaissance. And with structured concur-
rency, they have a secret weapon that could turn the tide and solve some of
asynchronous programming’s greatest flaws.

Who Is This Book For?

If you write Kotlin code, this book is for you.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Introduction ® iv

Coroutines have something to offer for almost every program. Whether you
build mobile apps, web pages, backend servers, or something else altogether,
you can use the tools and techniques in this book to improve your code and
enhance your development experience.

For those new to coroutines, the book will take you on a step-by-step journey.
We'll jump right in with a real-world example of an asynchronous program,
and we’ll gradually build on that foundation with a new topic in each chapter.
You'll learn how coroutines can upgrade your asynchronous code, and how
they compare with other tools you might have used, both in Kotlin and in
other languages.

Or perhaps you've already started using coroutines, and you're here to learn
more about them. Yes, we’ll answer all those frustrating questions. Why can’t
Ilaunch a coroutine there? Why does that function work that way? And what'’s
this exception doing here? You’'ll learn about the unique challenges that come
with asynchronous programming and concurrency, and understand how each
tool in your coroutine toolbox has been carefully designed to help solve these
problems.

Online Resources

You'll find a dedicated page' for this book on the Pragmatic Bookshelf website.
From there, you can download the complete source code for all the examples
you’ll be working with. If you're reading the book in digital form, you’ll also
find a handy link above each code snippet that’ll bring you directly to the
source file.

Got feedback or questions? Follow the links on the book’s webpage to find
the DevTalk forum, where you can report a mistake, make a suggestion, or
just discuss what you've learned with other readers.

What You'll Need

Before you start, you should already be familiar with the Kotlin programming
language. We'll be looking closely at how coroutines work with common con-
trol-flow structures—things like functions, loops, and try—catch—finally blocks—so
it'll help if you have a clear understanding of how those basics work in
everyday code.

As we introduce each topic, we’ll work through a code example where we use
coroutines to solve a real-life problem. If you'd like to follow along with the

1. http://pragprog.com/titles/sckotlin

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/sckotlin
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

What's in This Book? ® v

code examples in the book, you'll also need to be comfortable using an IDE
like IntelliJ IDEA or Android Studio, setting up and executing a simple project,
and adding dependencies. If you’'d rather just read the code without running
it, that’s fine too!

For simplicity, we’ll run our code examples in a desktop Java environment.
They've been written and tested using Kotlin 2.1 and Java 21, but they should
work fine on any recent version. We won’t include any code examples for
other targets, aside from one or two illustrative Android snippets, but when
there are changes required to translate the code from platform to platform,
we’'ll talk about what those are.

What’s in This Book?

We'll begin our journey with a simple program that uses coroutines to wait
for outside events without blocking its thread. To do so, we’ll introduce sus-
pending functions, which are the building blocks that give coroutines their
power. We'll compare them to ordinary functions, and to other kinds of
asynchronous programming. Why use suspending functions instead of call-
backs or blocked threads? We'll build a photo-gallery app that demonstrates
how coroutines can give us the best of both worlds, keeping our single-
threaded user-interface code clean and responsive.

But why do suspending functions come with extra rules and syntax—restric-
tions that don’t seem to apply to other solutions like callbacks and futures?
As we continue to improve our photo-gallery app, we’ll add a coroutine scope,
and use its coroutine builder functions to add new coroutines to an existing
application. We’'ll compare this to the ways we might make an asynchronous
call in other languages or frameworks, and we’ll see how Kotlin’s approach
is protecting us from a memory leak minefield.

Coroutines aren’t just for user-interface code, and we’ll use them to harness
the multitasking power of any asynchronous operation. As we do so, we’ll
also learn about the rules that link our tasks together into a safe, structured
hierarchy. We’ll make sure errors don’t go missing, and we’ll use cooperative
cancellation to stop our coroutines becoming resource-stealing zombies.

Next, we’ll stage a contest to pit our coroutines against old-fashioned threads.
We’ll learn why coroutines are sometimes called lightweight threads, and we’ll
use a new coroutine dispatcher to give our coroutines an even bigger speed
boost with parallel execution.

Coroutines can interoperate with almost any other asynchronous programming
style you can think of. They can even call blocking functions, if you use the

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Introduction ® vi

right dispatcher. We'll learn some built-in functions and facilities to convert
between threads, coroutines, callbacks, and futures, and we’ll even try our
hand at creating our own suspension point from scratch. As we near the end
of our journey, we’ll introduce flows, using them to encapsulate asynchronous
procedures and integrate with Reactive Streams.

Since no software is complete without tests, we’ll wrap up with some handy
tools and techniques for testing the coroutines we’ve written.

Ready to get started?

Let’s dive into the world of coroutines, and write our first suspending function!

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Part I

Best of Both Worlds

Familiar sequential control flow, or responsive user
interfaces? Powerful parallel processing, or low-cost
lightweight execution? Safe, predictable outcomes,
or efficient asynchronous multitasking? It’s a world
Jfull of compromises—but it doesn’t have to be.

In the first part of this book, you'll learn to speal
the language of coroutines. We’ll unpick all of those
difficult choices, and you’ll assemble the coroutine
tools and techniques to malee them each a thing of
the past.



