
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

How Slow Can You Go?
Our password hashing function creates security by taking a long time to run.
But as we’ve seen, a more powerful computer with extra CPU cores can make
the job easier. Let’s make our hashing algorithm configurable, so that hackers
can’t overcome all our defenses just by buying a more powerful computer.

parallel/v6/src/main/kotlin/com/example/parallel/Hash.kt
const val iterations = 200_000_000➤

fun slowHash(password: String, salt: ByteArray = salt()): String {
val sha256 = MessageDigest.getInstance("sha256")

var hash = salt + password.encodeToByteArray()
repeat(iterations) {➤

hash = sha256.digest(hash)
}

return salt.toHexString() + hash.toHexString()
}

Two hundred million iterations should slow it down plenty! Okay, maybe
that’s a bit extreme—but with an adjustable number of iterations, we can
tune it later to find the right balance between performance and security.

Let’s test our new slowHash() function on just one password, and see how long
it takes now.

parallel/v6/src/main/kotlin/com/example/parallel/MultithreadingApplication.kt
fun main() {

val (value, duration) = measureTimedValue {
slowHash(password = "kotlin1")

}

println("Computed the hash in $duration")
println(value)

}

Computed the hash in 8.370272792s
0ba2d16763766162a702a8adfab7d39e07aa5b31ae54b019…

Great—that should keep those hackers busy.

Play by the Rules
Now that this function takes longer to run, there’s a new problem we need to
think about. Let’s see what happens to this program if we try to add a time
limit using the withTimeoutOrNull() function.

parallel/v7/src/main/kotlin/com/example/parallel/MultithreadingApplication.kt
suspend fun main() {

val (value, duration) = measureTimedValue {

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sckotlin/code/parallel%2Fv6%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fparallel%2FHash.kt
http://media.pragprog.com/titles/sckotlin/code/parallel%2Fv6%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fparallel%2FMultithreadingApplication.kt
http://media.pragprog.com/titles/sckotlin/code/parallel%2Fv7%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fparallel%2FMultithreadingApplication.kt
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

withTimeoutOrNull(5.seconds) {
slowHash("kotlin1")

}
}

println("Computed the hash in $duration")
println(value)

}

What do you think is going to happen when you run this code? Can you
predict the output?

Computed the hash in 8.494025s
0e8ba295bcb4a52d823ef0814cc7583573de604a60081252…

Huh? The five-second timeout didn’t seem to do anything at all. The output
is exactly the same as it would have been if the withTimeoutOrNull() function
wasn’t there at all.

What went wrong?

In a way, that’s a trick question. The withTimeoutOrNull() function is designed for
use with suspending operations, like the long-running network requests and
timed delays that made up our museum tour program in the last chapter.
It’ll wake up a suspended coroutine if it’s been waiting for too long.

But our slowHash() function isn’t a suspending function at all, and it doesn’t
include any waiting. It doesn’t have a clue that it’s running in a coroutine,
and with no suspension points or other cancellation checks, it’ll never find
out that the coroutine has been cancelled. Remember, cancellation is cooper-
ative—the only way to stop a task is to ask it nicely, and hope it’s paying
attention.

That’s not great! This function uses a lot of resources, and since we’re going
to be using coroutines to run it in parallel, we want it to play by the rules. If
its parent Job fails or gets cancelled, the task should exit promptly, instead of
continuing to spend CPU time on a calculation that will never be used.

There are a few ways we could think about adding cancellation checks to our
slowHash() function. Maybe you already have an idea of how you might modify
the function and its loop condition to solve the problem. Before we take care
of it, though, let’s have a look at another problem we might run into when
we use this code in a coroutine.

Don’t Be Selfish
Let’s add some parallelization back into our program. That’s the reason we
want coroutines in the mix, after all.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Our function will take much longer to run now, so we’ll reduce the number
of passwords we’re processing. Even so, we’re just going to get a blank console
until it’s done. Maybe we could add some sort of output to keep track of
progress, and show how long the program’s been working?

We’ll start with one password-hashing task for each CPU core. On top of that,
we’ll add one additional coroutine, to measure the elapsed time and display
our output. This extra task will only wake up once every second, so it’ll
barely add any extra demand on our system’s resources. Even so, we’re not
going to get the behavior we want when we try running this code. Can you
guess what the problem is?

parallel/v8/src/main/kotlin/com/example/parallel/MultithreadingApplication.kt
suspend fun main() = withContext(Dispatchers.Default) {

val startTime = TimeSource.Monotonic.markNow()
val numberOfCores = Runtime.getRuntime().availableProcessors()

val passwordJob = async {
passwords.take(numberOfCores) // one task for each CPU core
.map { async { slowHash(it) } }.awaitAll()

}

launch {
while (passwordJob.isActive) {
delay(1.seconds)
println("Time taken so far: ${startTime.elapsedNow()}")

}
}

val values = passwordJob.await()
println("Computed ${values.size} hashes in ${startTime.elapsedNow()}")

}

Our new timer coroutine will run for as long as the passwordJob is still doing
work. Notice how we’re putting our structured concurrency skills to use by
using that Job as a parent for each of our other async() tasks!

All our coroutines are supposed to be running at once, and so we should start
seeing the output from our timer coroutine right away. But instead, it doesn’t
seem to do anything at all until the program’s almost over.

Time taken so far: 27.5s
Time taken so far: 28.5s
Computed 10 hashes in 29.4s
Time taken so far: 29.5s

Why did the final coroutine take more than twenty seconds to start?

It’s because all our dispatcher’s threads were already busy doing other work.
Our slowHash() function is selfish—once it’s got hold of a thread, it’s going to

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/sckotlin/code/parallel%2Fv8%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fparallel%2FMultithreadingApplication.kt
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

keep it. As you learned way back at the start of our journey, an ordinary non-
suspending function like this one can’t give up its thread until it reaches the
end and exits.

So by the time our final coroutine comes along, all the threads are already
taken! The default dispatcher has just the right number of threads to match
our system’s processor cores—any more would be wasteful. But with all those
threads already busy running uncooperative coroutines, there’s no way for
other tasks to get a look in.

If we were using a dedicated thread for each task, this wouldn’t be a problem.
Instead of relying on cooperative suspension points, threads allow for preemp-
tive multitasking, where the system can swap between tasks whenever it likes.
But it can only work with the threads we give it, and all our dispatcher’s
threads are already loaded up with password-hashing tasks. The timer
coroutine was the last to be started, and it won’t be allocated to a thread at
all until the dispatcher has completed at least one of its other tasks.

Sharing Is Caring
You’ve just seen two problems with running our slowHash() function in a
coroutine. First, it can’t exit early when the coroutine is cancelled, because
it doesn’t know anything about coroutines or cancellation. And second, it
can’t cooperate by sharing its thread with other tasks. As an ordinary function
with no suspension capabilities, it’s bound to its thread until it’s completed
its entire execution.

We can fix both of these problems by giving the slowHash() some suspension
points. That might sound strange, since it doesn’t have any asynchronous
operations or outside events to wait for. But suspending is just as much about
cooperating with other coroutines as it is about waiting for outside events. If
there are several coroutines waiting to execute, we can suspend the current
function and let another task run for a while.

That’s the job of the yield() function.

����D

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

Think of it like the yield or give way sign at a traffic intersection. It marks a
point where you need to pause and check for other vehicles—but you only
have to stop if there’s actually something coming. If there aren’t any other
coroutines waiting, the yield() function doesn’t suspend at all, and the current
task just keeps right on running.

Let’s try it out in our code. We’ll call yield() once every two hundred thousand
iterations.

parallel/v8/src/main/kotlin/com/example/parallel/Hash.kt
suspend fun slowHash(password: String, salt: ByteArray = salt()): String {➤

val sha256 = MessageDigest.getInstance("sha256")

var hash = salt + password.encodeToByteArray()
repeat(iterations) { i ->

if (i % 200_000 == 0) yield()➤

hash = sha256.digest(hash)
}

return salt.toHexString() + hash.toHexString()
}

Run either of the two previous programs again with this upgraded slowHash()
function, and everything works the way we wanted. Our extra timer coroutine
can print its output every one second, and our timeout code can cancel the
work promptly.

Striking a Balance

Consider using yield() to keep everything running smoothly if you’re
doing CPU work for more than a few dozen milliseconds. But don’t
go overboard, or you might end up with more task-switching than
actual work.

Any suspension point, whether it’s a delay() or a network request, creates a
gap where the task can give up its thread and let other coroutines take a
turn. So the yield() function is only necessary when a coroutine runs for a long
time without encountering any other suspending functions. Like any other
suspension point, it also checks for cancellation, throwing a CancellationException
when the task is no longer needed.

Notice how we had to add the suspend modifier directly to our slowHash() function
this time—not just to the main() function that’s going to wait for its parallel
execution. That’s because yield() is a suspending function—even if it only ever
waits for other coroutines, and not outside events. Since coroutines use
suspension points for cooperative multitasking, being able to suspend is a

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/sckotlin/code/parallel%2Fv8%2Fsrc%2Fmain%2Fkotlin%2Fcom%2Fexample%2Fparallel%2FHash.kt
http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

useful trait for any long-running function that wants to be a good neighbor
while running on a coroutine dispatcher.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sckotlin
http://forums.pragprog.com/forums/sckotlin

