
Extracted from:

Concurrent Data Processing in Elixir
Fast, Resilient Applications with OTP,

GenState, Flow, and Broadway

This PDF file contains pages extracted from Concurrent Data Processing in Elixir,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com






Concurrent Data Processing in Elixir
Fast, Resilient Applications with OTP,

GenState, Flow, and Broadway

Svilen Gospodinov

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-819-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com


CHAPTER 3

Data-Processing Pipelines with GenStage
In previous chapters, we covered several approaches to executing data asyn-
chronously. Although different in their own way, they had one thing in com-
mon: we were deciding the amount of work that had to be done and Elixir
would then eagerly process the work to give us the result.

This has some potential drawbacks. For example, we have a finite amount of
memory and CPU power available. This means that our server may become
overwhelmed by the amount of work it needs to do and become slow or
unresponsive. Often we rely on third-party API services, which have rate
limiting in place and fixed quotas for the number of requests we can make.
If we go over their quota, requests will be blocked and our application will
stop working as expected.

In a nutshell, as the amount of work we need to do grows, there is an increas-
ing chance that we can hit a certain limit on a resource available to us. You
can spend more money on computer hardware or buy more powerful virtual
machines, but that’s usually a temporary solution that often leads to dimin-
ishing returns. For that reason, making the best use of existing resources
should be a priority when designing and scaling software applications.

In this chapter, we’re going to learn how to build data-processing pipelines
that can utilize our system resources reliably and effectively. We’ll introduce
the GenStage Elixir library and the fundamental building blocks that it provides.
First we are going to create a simple data-processing pipeline to start with,
then scale it and extend it to demonstrate how you can tackle more complex
use cases.

But before we get into it, first we need to explain what back-pressure is, and
how it enables us to build data-processing pipelines. Let’s get started!

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir


Understanding Back-Pressure
Imagine you’re a famous writer giving autographs at a book event. There is
a crowd of people rushing to meet you. You can only do one autograph at a
time, so the organizers let people in one by one. When you sign someone’s
book, you ask for the next person to come forward. What if the organizers
suddenly let everyone in? Of course, it will be complete chaos! You’ll try to
sign everyone’s books as quickly as you can, but soon you’ll get stressed and
exhausted, leaving the event early.

It is much more efficient to have an orderly queue of people and to take your
time to sign each book. Because you always ask for the next person to come
forward, you are in control of the amount of work you have to do, and it is
much easier to keep going. Maybe you won’t get that tired, so you decide to
stay at the event longer and make sure everyone gets an autograph. This is
in fact an example of handling back-pressure in real life.

How does this translate in programming? Using the GenStage library we are
going to build a data-processing pipeline that works like the well-organized
book event we just described. The system will process only the amount of
work it can handle at a given time, just like the famous writer from our
example. If the system has free capacity, it will politely ask for more work and
wait for it.

This simple shift in our thinking is very powerful. It enables us to build
complex data pipelines that regulate themselves to utilize the available
resources in the best possible way.

Borrowing Terminology

The term back-pressure, according to Wikipedia, originates from
fluid dynamics and the automotive industry, where it is used to
describe resistance to the normal flow of fluids in pipes.

Software engineers borrowed the term and loosely use it in the
context of data processing, when something is slowing down or
stopping the flow of data. When we talk about using back-pressure,
we actually mean using a mechanism to control or handle back-
pressure in a beneficial way.

Introducing GenStage
GenStage was originally developed by José Valim, the creator of Elixir, and
released in July 2016. As he described it in the official announcement:

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir


“GenStage is a new Elixir behaviour for exchanging events with back-pressure
between Elixir processes.”

In the previous chapter, we used the GenServer behaviour to build long-running
server processes. The GenStage behaviour, as its name suggests, is used to
build stages. Stages are also Elixir processes and they’re our building blocks
for creating data-processing pipelines.

Stages are simple but very powerful. They can receive events and use them
to do some useful work. They can also send events to the next stage in the
pipeline. You can do that by connecting stages to each other, creating some-
thing like a chain, as you can see here:

StageStage StageStage

A stage can also have multiple instances of itself. Since stages are processes,
this effectively means running more than one process of the same stage type.
This means that you can also create something that looks like this:

Stage

Stage

Stage
Stage

Stage
Stage

Stage

Stage

These are just two possible designs. In practice, different problems require
different solutions, so your data-processing pipeline could end up looking
completely different. When you finish this chapter, you will have a solid
understanding of GenStage and you will be able to come up with a solution
that works best for you.

• Click  HERE  to purchase this book now.  discuss

Introducing GenStage • 7

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir


As you can see, stages are very flexible and can be used in a variety of ways.
However, their most important feature is back-pressure.

Although events move between stages from left to right on our diagram, it is
actually the last stage in the pipeline that controls the flow. This is because
the demand for more events travels in the opposite direction—from right to
left. This figure shows how it works:

Stage BStage A Stage DStage C

Flow of data

Demand

Stage D has to request events from Stage C, and so on, until the demand
reaches the beginning of the pipeline. As a rule, a stage will send demand for
events only when it has the capacity to receive more. When a stage gets too
busy, demand will be delayed until the stage is free, slowing down the flow
of data. Sounds familiar? This is exactly how the book event example from
Understanding Back-Pressure, on page 6 would work if we implemented it
as a data-processing pipeline. This figure illustrates how we can model the
book event using stages:

AuthorOrganizer

Flow of guests

Requests for next in line

By treating guests as a flow of events, the author stage can “process” a guest
by signing their book, and then request the next guest from the organizer
when ready. The organizer stage, on the other hand, has to make sure that
only one guest at a time comes forward, as the author requests. This is how
back-pressure works in GenStage, and the best part is that you benefit from it
simply by thinking in stages and connecting them together.

• 8

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir


Connecting stages is easy, but first you need to know what stages to use.
There are three different types of stages available to us: producer, consumer, and
producer-consumer. Each one plays a certain role. Let’s briefly cover each type of
stage and see how it is made to work with the rest.

The Producer
At the beginning of a data-processing pipeline there is always a producer
stage, since the producer is the source of data that flows into the pipeline. It
is responsible for producing events for all other stages that follow. An event
is simply something that you wish to use later on; it could be a map or a
struct. You can use any valid Elixir data type. Here is an example of a two-
stage data pipeline:

?Producer

The events produced by the producer have to be processed by another stage,
which is missing in the figure. What we need here is a consumer for those
events.

The Consumer
Events created by the producer are received by the consumer stage. A con-
sumer has to subscribe to a producer to let them know they’re available, and
request events.

This producer and consumer relationship is around us every day. For example,
when you go to the farmer’s market, the farmers that grow vegetables are
producers. They wait until a customer (a consumer) comes and asks to buy
some vegetables.

Consumer stages are always found at the end of the pipeline. Now we can fill
in the missing process. The following figure illustrates the simplest data
pipeline we can create using GenStage:

ConsumerProducer

It has just a single producer and a consumer.

• Click  HERE  to purchase this book now.  discuss

Introducing GenStage • 9

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir


The Producer-Consumer
Although having a producer and a consumer is already very useful, sometimes
we need to have more than two stages in our pipeline. This is where the pro-
ducer-consumer stage comes in—it has the special ability to produce and
consume events at the same time. The following figure shows how one or
more producer-consumer stages can be used to extend a pipeline.

Producer 
ConsumerProducer Consumer

Producer 
ConsumerProducer ConsumerProducer 

Consumer

A useful analogy to a producer-consumer is the restaurant. A restaurant
serves meals (producer) but in order to cook the meals, it needs ingredients
sourced from its suppliers (acting as a consumer). In a nutshell, producer-
consumers are the middle-man in our data-processing pipelines.

We’ve covered a lot of theory, so let’s finally dive into some examples.

• 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir

