
Extracted from:

Concurrent Data Processing in Elixir
Fast, Resilient Applications with OTP,

GenState, Flow, and Broadway

This PDF file contains pages extracted from Concurrent Data Processing in Elixir,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Concurrent Data Processing in Elixir
Fast, Resilient Applications with OTP,

GenState, Flow, and Broadway

Svilen Gospodinov

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-819-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Easy Concurrency with the Task Module
Since the dawn of the computer industry, hardware manufacturers and com-
puter scientists have tried to make computers faster at running programs.
At first, multithreading was the only way to achieve concurrency, which is
the ability to run two or more programming tasks and switch between them
to collect the results. This is how computers appeared to be doing many things
at once, when in fact they were simply multitasking.

Multi-core CPUs changed that. They brought parallelism and allowed tasks
to run at the same time, independently, which significantly increased systems’
performance. Multiprocessor architectures followed, enabling even greater
concurrency and parallelism by supporting two or more CPUs on a single
machine. The figure below shows a simple comparison between concurrency
on a single-core CPU vs. a dual-core CPU. The latter also enables parallelism:

Concurrency
and parallelism

Task A

Task BTwo CPU cores

Concurrency Task A Task B A B A done B done

pause A and switch

pause B and switch

Single CPU core

Of course, cutting-edge hardware always comes with a high price tag. But
with the advent of cloud computing, things changed once again. Nowadays
you can run code on cloud services using virtual machines with dozens of
CPU cores, without the need to buy and maintain any physical hardware.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir

All these advancements are important to us as software engineers. We want
to write software that performs well and runs quickly. After all, no one likes
loading screens and waiting for the computer to finish. However, running
code on a multi-core processor system does not automatically make it efficient.
In order to take full advantage of the computer resources available to us, we
need to write software with concurrency and parallelism in mind. Thankfully,
modern programming languages try to help us as much as possible, and Elixir
is no exception. In fact, thanks to Erlang, the Erlang Virtual Machine (BEAM),
and the Open Telecom Platform (OTP), Elixir is a superb choice for building
concurrent applications and processing data as you’ll soon see in this and
upcoming chapters.

In this book we’re going to cover the most popular tools for performing con-
current work using Elixir. You will learn about the pros and cons of each one
and see how they work in practice. Some of them, like the Task module and
GenServer, come with Elixir. The others—GenStage, Flow, and Broadway—are avail-
able as stand-alone libraries on the Hex.pm package registry. Knowing how to
utilize each of these tools will help you leverage concurrency in the most
effective way and solve even the most challenging problems. Along the way,
you will also learn how to build fault-tolerant applications, recover from fail-
ures, use back-pressure to deal with limited system resources, and many
more useful techniques.

First, we are going to look at the Task module, which is part of the Elixir standard
library. It has a powerful set of features that will help you run code concur-
rently. You are also going to see how to handle errors and prevent the appli-
cation from crashing when a concurrent task crashes. The chapter provides
a foundation on which the following chapters will be built upon, so let’s get
started!

Introducing the Task Module
To run code concurrently in Elixir, you have to start a process and execute
your code within that process. You may also need to retrieve the result and
use it for something else. Elixir provides a low-level function and a macro for
doing this—spawn/1 and receive. However, using them could be tricky in practice,
and you will likely end up with a lot of repetitive code.

Elixir also ships with a module called Task, which significantly simplifies starting
concurrent processes. It provides an abstraction for running code concurrently,
retrieving results, handling errors and starting a series of processes. It packs
a lot of features and has a concise API, so there is rarely (if ever) need to use
the more primitive spawn/1 and receive.

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir

In this chapter, we are going to cover everything that the Task module has to
offer. You will learn how to start tasks, and different ways to retrieve results.
You will tackle processing large lists of data. We will talk about handling
failure and explain how process linking works in Elixir. You will then see how
to use one of the built-in Supervisor modules for isolating process crashes, and
finally, discuss Elixir’s approach to error handling.

Before we dive in, let’s create an Elixir project to work on first and get familiar
with some of the development tools we’re going to use throughout this and
the following chapters.

What Is an Elixir Process?

Processes in Elixir are Erlang processes, since Elixir runs on the
Erlang Virtual Machine. Unlike operating system processes, they
are very lightweight in terms of memory usage and quick to start.
The Erlang VM knows how to run them concurrently and in par-
allel (when a multi-core CPU is present). As a result, by using
processes, you get concurrency and parallelism for free.

Creating Our Playground
We are going to create an application called sender and pretend that we are
sending emails to real email addresses. We are going to use the Task module
later to develop some of its functionality.

First, let’s use the mix command-line tool to scaffold our new project:

$ mix new sender --sup

This creates a sender directory with a bunch of files and folders inside. Notice
that we also used the --sup argument, which will create an application with a
supervision tree. You will learn about supervision trees later in this chapter.

Next, change your current directory to sender with cd sender and run iex -S mix.
You should see some Erlang version information and the following message:

Interactive Elixir (1.11.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

We’re now running the Interactive Elixir shell, also known as IEx. We are going
to use it to test code frequently throughout the book. Most of the time, when
we make a code change using our text editor, we can call the special recompile/0
function available in IEx, and the code will reload:

iex(1)> recompile()
:noop

• Click HERE to purchase this book now. discuss

Creating Our Playground • 3

http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir

We haven’t actually added or changed any code yet, so the function returned
just :noop for no operation.

In some cases, you may need to restart the IEx shell entirely, for example,
when making fundamental application changes in the application.ex file. You
can restart IEx by pressing Ctrl-C twice to quit and then running the iex -S mix
command again.

To keep our project and examples simple, we’re not actually going to send
real emails. However, we still need some business logic for our experiments.
We can use the Process.sleep/1 function to pretend we’re sending an email, which
is normally a slow operation and can take a few seconds to complete. When
called with an integer, Process.sleep/1 stops the current process for the given
amount of time in milliseconds. This is very handy, because you can use it
to simulate code that takes a long time to complete. You can also use it to
test various edge cases, as you will see later. Of course, in real world produc-
tion applications, you will replace this with your actual business logic. But
for now, let’s pretend that we’re doing some very intensive work.

Let’s open sender.ex and add the following:

sender/lib/sender.ex
def send_email(email) do

Process.sleep(3000)
IO.puts("Email to #{email} sent")
{:ok, "email_sent"}

end

Calling this function will pause execution for three seconds and print a mes-
sage, which will be useful to debugging. It also returns a tuple {:ok, "email_sent"}
to indicate that the email was successfully sent.

Now that everything is set up, we’re ready to start. I suggest you keep one
terminal session with IEx open and your favorite text editor next to it, so you
can make and run changes as we go.

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sgdpelixir/code/sender/lib/sender.ex
http://pragprog.com/titles/sgdpelixir
http://forums.pragprog.com/forums/sgdpelixir

