Extracted from:

This PDF file contains pages extracted from Programming Clojure, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,
please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Stuart Halloway

Edited by Susannah Davidson Pfalzer

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Stuart Halloway.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-33-6
ISBN-13: 978-1-934356-33-3
Printed on acid-free paper.
P2.0 printing, September 2009
Version: 2009-10-27

http://www.pragprog.com

FLow CONTROL <« 69

If you want to also reload any namespaces that examples.exploring refers
to, you can pass :reload-all:

(use :reload-all 'examples.exploring)

It is idiomatic to import Java classes and use namespaces at the top of
a source file, using the ns macro:

(ns name & references)

The ns macro sets the current namespace (available as *ns*) to name,
creating the namespace if necessary. The references can include :import,
:require, and :use, which work like the similarly named functions to set
up the namespace mappings in a single form at the top of a source file.

For example, this call to ns appears at the top of the sample code for
this chapter:

Download examples/exploring.clj

(ns examples.exploring
(:use examples.utils clojure.contrib.str-utils)
(:import (java.io File)))

Clojure’s namespace functions can do quite a bit more than I have
shown here.

You can reflectively traverse namespaces and add or remove mappings
at any time. To find out more, issue this command at the REPL:

(find-doc "ns-")

Alternately, browse the documentation at http://clojure.org/namespaces.

2.5 Flow Control

Clojure has very few flow control forms. In this section, you will meet if,
do, and loop/recur. As it turns out, this is almost all you will ever need.

Branch with if

Clojure’s if evaluates its first argument. If the argument is logically true,
it returns the result of evaluating its second argument:

Download examples/exploring.clj

(defn is-small? [number]
(if (< number 100) "yes"))

(is-small? 50)

= yes

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://clojure.org/namespaces
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.pragprog.com/titles/shcloj

FLow CoNnTROL <« 70

If the first argument to if is logically false, it returns nil:
(is-small1? 50000)
= nil
If you want to define a result for the “else” part of if, add it as a third
argument:

Download examples/exploring.clj

(defn is-small? [number]
(if (< number 100) "yes" "no"))

(is-smal1? 50000)

= no

The when and when-not control flow macros are built on top of if and are
described in Section 7.2, when and when-not, on page 219.

Introduce Side Effects with do

Clojure’s if allows only one form for each branch. What if you want to
do more than one thing on a branch? For example, you might want to
log that a certain branch was chosen. do takes any number of forms,
evaluates them all, and returns the last.

You can use a do to print a logging statement from within an if:

Download examples/exploring.clj

(defn is-small? [nhumber]
(if (< number 100)
"yes"
(do
(println "Saw a big number" number)
"n6")))

(is-small1? 200)
| Saw a big number 200

= no

This is an example of a side effect. The printin doesn’t contribute to the
return value of is-small? at all. Instead, it reaches out into the world
outside the function and actually does something.

Many programming languages mix pure functions and side effects in
completely ad hoc fashion. Not Clojure. In Clojure, side effects are
explicit and unusual. do is one way to say “side effects to follow.” Since
do ignores the return values of all its forms save the last, those forms
must have side effects to be of any use at all.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.pragprog.com/titles/shcloj

FLow CONTROL <d 71

Recur with loop/recur

The Swiss Army knife of flow control in Clojure is loop:

(Toop [bindings *] exprsx)

The loop special form works like let, establishing bindings and then eval-

uating exprs. The difference is that loop sets a recursion point, which can
then be targeted by the recur special form:

(recur exprss*)

recur binds new values for loop’s bindings and returns control to the top
of the loop. For example, the following loop/recur returns a countdown:

Download examples/exploring.clj

(loop [result [] x 5]
(if (zero? x)
result
(recur (conj result x) (dec x))))

= [54321]

The first time through, loop binds result to an empty vector and binds x
to 5. Since x is not zero, recur then rebinds the names x and result:

¢ result binds to the previous result conjoined with the previous x.
* x binds to the decrement of the previous x.

Control then returns to the top of the loop. Since x is again not zero, the
loop continues, accumulating the result and decrementing x. Eventually,
x reaches zero, and the if terminates the recurrence, returning result.

Instead of using a loop, you can use recur back to the top of a function.
This makes it simple to write a function whose entire body acts as an
implicit loop:

Download examples/exploring.clj

(defn countdown [result x]
(if (zero? x)
result
(recur (conj result x) (dec x))))

(countdown [] 5)

= [54321]
recur is a powerful building block. But you may not use it very often,
because many common recursions are provided by Clojure’s sequence
library.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.pragprog.com/titles/shcloj

WHERE'S MY FOR Loop? <« 72

For example, countdown could also be expressed as any of these:

(into [] (take 5 (iterate dec 5)))
= [54321]

(into [] (drop-last (reverse (range 6))))
= [54321]

(vec (reverse (rest (range 6))))
= [54321]

Do not expect these forms to make sense yet—just be aware that there
are often alternatives to using recur directly. The sequence library
functions used here are described in Section 4.2, Using the Sequence
Library, on page 119. Clojure will not perform automatic tail-call opti-
mization (TCO). However, it will optimize calls to recur. Chapter 5, Func-
tional Programming, on page 149 defines TCO and explores recursion
and TCO in detail.

At this point, you have seen quite a few language features but still no
variables. Some things really do vary, and Chapter 6, Concurrency, on
page 179 will show you how Clojure deals with changeable references.
But most variables in traditional languages are unnecessary and down-
right dangerous. Let’s see how Clojure gets rid of them.

2.6 Where’s My for Loop?

Clojure has no for loop and no direct mutable variables.® So, how do
you write all that code you are accustomed to writing with for loops?

Rather than create a hypothetical example, I decided to grab a piece
of open source Java code (sort of) randomly, find a method with some
for loops and variables, and port it to Clojure. I opened the Apache
Commons project, which is very widely used. I selected the StringUtils
class in Commons Lang, assuming that such a class would require
little domain knowledge to understand. I then browsed for a method
that had multiple for loops and local variables and found indexOfAny:

Download snippets/StringUtils.java

// From Apache Commons Lang, http://commons.apache.org/lang/
public static int indexOfAny(String str, char[] searchChars) {
if (isEmpty(str) || ArrayUtils.isEmpty(searchChars)) {

return -1;

}

8. Clojure provides indirect mutable references, but these must be explicitly called out
in your code. See Chapter 6, Concurrency, on page 179 for details.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/snippets/StringUtils.java
http://www.pragprog.com/titles/shcloj

WHERE'S MY FOR Loop? <« 73

for (int i = 0; i < str.lengthQ; i++) {
char ch = str.charAt(i);
for (int j = 0; j < searchChars.length; j++) {
if (searchChars[j] == ch) {
return i;
}
}
}
return -1;

}

indexOfAny walks str and reports the index of the first char that matches
any char in searchChars, returning -1 if no match is found. Here are
some example results from the documentation for indexOfAny:

StringUtils.indexOfAny(null, =) = -1
StringUtils.indexOfAny("", =) = -1
StringUtils.indexOfAny(x, null) = -1
StringUtils.indexOfAny(x, []1) = -1
StringUtils.indexOfAny("zzabyycdxx",['z",'a']) = 0
StringUtils.indexOfAny("zzabyycdxx",['b',"'y']) = 3
StringUtils.index0fAny("aba", ['z']) = -1

There are two ifs, two fors, three possible points of return, and three
mutable local variables in indexOfAny, and the method is fourteen lines
long, as counted by David A. Wheeler's SLOCCount.?

Now let’s build a Clojure index-of-any, step by step. If we just wanted
to find the matches, we could use a Clojure filter. But we want to find
the index of a match. So, we create indexed,!® a function that takes a
collection and returns an indexed collection:

Download examples/exploring.clj
(defn indexed [col1] (map vector (iterate inc 0) coll))
indexed returns a sequence of pairs of the form [idx elt]. The expression

(iterate inc 0) produces the indexes, and the coll argument provides the
elements. Try indexing a string:

(indexed "abcde")
= ([0 \a] [1 \b] [2 \c] [3 \d] [4 \eD)

Next, we want to find the indices of all the characters in the string that
match the search set.

9. http://www.dwheeler.com/sloccount/
10. The indexed function already exists as part of clojure-contrib, but I am reimplementing
it here for fairness of comparison.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.dwheeler.com/sloccount/
http://www.pragprog.com/titles/shcloj

WHERE'S MY FOR Loopr? <« 74

Create an index-filfer function that is similar to Clojure’s filter but that
returns the indices instead of the matches themselves:

Download examples/exploring.clj

(defn index-filter [pred coll]
(when pred
(for [[idx elt] (indexed col1) :when (pred elt)] idx)))

Clojure’s for is not a loop but a sequence comprehension (see Sec-
tion 4.2, Transforming Sequences, on page 124). The index/element
pairs of (indexed coll) are bound to the names idx and elt but only when
(pred elt) is true. Finally, the comprehension yields the value of idx for
each matching pair.

Clojure sets are functions that test membership in the set. So, you can
pass a set of characters and a string to index-fiter and get back the
indices of all characters in the string that belong to the set. Try it with
a few different strings and character sets:

(index-filter #{\a \b} "abcdbbb')
= (01456

(index-filter #{\a \b} "xyz")
= O

At this point, we have accomplished more than the stated objective.
index-filter returns the indices of all the matches, and we need only the
first index. So, index-of-any simply takes the first result from index-filter:

Download examples/exploring.clj

(defn index-of-any [pred coll]
(first (index-filter pred col1)))

Test that index-of-any works correctly with a few different inputs:

(index-of-any #{\z \a} '"zzabyycdxx")

= 0
(index-of-any #{\b \y} "zzabyycdxx")
= 3

The Clojure version is simpler than the imperative version by every
metric (see Figure 2.2, on the following page). What accounts for the
difference?

* The imperative indexOfAny must deal with several special cases:
null or empty strings, a null or empty set of search characters,
and the absence of a match. These special cases add branches
and exits to the method. With a functional approach, most of these
kinds of special cases just work without any explicit code.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.pragprog.com/titles/shcloj

WHERE'S MY FOR Loopr? <« 75

Metric LOC Branches Exits/Method Variables
Imperative Version 14 4 3 3
Functional Version 6 1 1 0

Figure 2.2: Relative complexity of imperative and functional indexOfAny

* The imperative indexOfAny introduces local variables to traverse
collections (both the string and the character set). By using
higher-order functions such as map and sequence comprehen-
sions such as for, the functional index-of-any avoids all need for
variables.

Unnecessary complexity tends to snowball. For example, the special
case branches in the imperative indexOfAny use the magic number
-1 to indicate a nonmatch. Should the magic number be a symbolic
constant? Whatever you think the right answer is, the question itself
disappears in the functional version. While shorter and simpler, the
functional index-of-any is also vastly more general:

* indexOfAny searches a string, while index-of-any can search any
sequence.

¢ indexOfAny matches against a set of characters, while index-of-any
can match against any predicate.

* indexOfAny returns the first match, while index-filter returns all the
matches and can be further composed with other filters.

As an example of how much more general the functional index-of-any is,
you could use code we just wrote to find the third occurrence of “heads”
in a series of coin flips:
(nth (index-filter #{:h} [:t :t :h :t :h :t :t :t :h :h])
2)

= 8
So, it turns out that writing index-of-any in a functional style, without
loops or variables, is simpler, less error prone, and more general than
the imperative indexOfAny.!! On larger units of code, these advantages
become even more telling.

11. It is worth mentioning that you could write a functional indexForAny in plain Java,
although it would not be idiomatic. It may become more idiomatic when closures are
added to the language. See http://functionaljava.org/ for more information.

CLICK HERE to purchase this book now.

http://functionaljava.org/
http://www.pragprog.com/titles/shcloj

METADATA <d 76

2.7 Metadata

The Wikipedia entry on metadata!? begins by saying that metadata is
“data about data.” That is true but not usably specific. In Clojure, meta-
data is data that is orthogonal to the logical value of an object. For exam-
ple, a person’s first and last names are plain old data. The fact that a
person object can be serialized to XML has nothing to do with the per-
son and is metadata. Likewise, the fact that a person object is dirty and
needs to be flushed to the database is metadata.

You can add metadata to a collection or a symbol using the with-meta
function:

(with-meta object metadata)

Create a simple data structure, then use with-meta to create another
object with the same data but its own metadata:

(def stu {:name "Stu" :email "stu@thinkrelevance.com"})
(def serializable-stu (with-meta stu {:serializable true}))

Metadata makes no difference for operations that depend on an object’s
value, so stu and serializable-stu are equal:

(= stu serializable-stu)
= true

The = tests for value equality, like Java’s equals. To test reference equal-
ity, use identical?:

(identical? objl obj2)

You can prove that stu and serializable-stu are different objects by calling
identical?:

(identical? stu serializable-stu)
= false

identical? is equivalent to == in Java.

You can access metadata with the meta macro, verifying that serializable-
stu has metadata and stu does not:
(meta stu)

= nil

(meta serializable-stu)
= {:serializable true}

12. http://en.wikipedia.org/wiki/Metadata

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Metadata
http://www.pragprog.com/titles/shcloj

METADATA d 77

For convenience, you do not even have to spell out the meta function.
You can use the reader macro " instead:

Astu
= nil

Aserializable-stu
= {:serializable true}

When you create a new object based on an existing object, the existing
object’s metadata flows to the new object. For example, you could add
some more information to serializable-stu. The assoc function returns a
new map with additional key/value pairs added:

(assoc map k v & more-kvs)

Use assoc to create a new collection based on serializable-stu, but with a
state value added:

(def stu-with-address (assoc serializable-stu :state "NC"))
= {:name "Stu", :email "stu@thinkrelevance.com", :state "NC"}

stu-with-address has the new key/value pair, and it also takes on the
metadata from serializable-stu:

Astu-with-address
= {:serializable true}

In addition to adding metadata to your own data structures, you can
also pass metadata to the Clojure compiler using the reader metadata
macro.

Reader Metadata

The Clojure language itself uses metadata in several places. For exam-
ple, vars have a metadata map containing documentation, type infor-
mation, and source information. Here is the metadata for the str var:

(meta #'str)
= {:ns #<Namespace clojure.core>,
:name str,
:file "core.clj",
:Tine 313,
rarglists ([]1 [x] [x & ys]),
:tag java.lang.String,
:doc "With no args, ... etc."}

Some common metadata keys and their uses are shown in Figure 2.3,
on page 79.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj

METADATA <d 78

Much of the metadata on a var is added automatically by the Clojure
compiler. To add your own key/value pairs to a var, use the metadata
reader macro:

#Ametadata form

For example, you could create a simple shout function that upcases a
string and then document that shout both expects and returns a string,
using the :tag key:

; see also shorter form below

(defn #A{:tag String} shout [#A{:tag String} s] (.toUpperCase s))
= #'user/shout

You can inspect shout’s metadata to see that Clojure added the :tag:

A#'shout

{:ns #<Namespace user>,
:name shout,
:file "NO_SOURCE_FILE",
:Tline 57,
rarglists ([s]),
:tag java.lang.String}

You provided the :tag, and Clojure provided the other keys. The ‘file
value NO_SOURCE_FILE indicates that the code was entered at the REPL.

You can also pass a nonstring to shout and see that Clojure casts the
argument to a String before calling toUpperCase():
(shout 1)

= java.lang.ClassCastException: \
java.lang.Integer cannot be cast to java.lang.String

Because :fag metadata is so common, you can also use the short-form
#'Classname, which expands to #"{:tag Classname}. Using the shorter
form, you can rewrite shout as follows:

(defn #AString shout [#AString s] (.toUpperCase s))
= #'user/shout

If you find the metadata disruptive when you are reading the definition
of a function, you can place the metadata last. Use a variant of defn that
wraps one or more body forms in parentheses, followed by a metadata
map:

(defn shout

([s] (.toUpperCase s))
{:tag String})

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj

WRAPPING Ur «d 79

Metadata Key Used For

:arglists Parameter info used by doc

:doc Documentation used by doc

file Source file

line Source line number

:macro True for macros

:name Local name

:ns Namespace

‘fag Expected argument or return type

Figure 2.3: Common metadata keys

It is important to note that the metadata reader macro is not the same
as with-meta. The metadata reader macro adds metadata for the com-
piler, and with-meta adds metadata for your own data:

(def #A{:testdata true} foo (with-meta [1 2 3] {:order :ascending}))
= #'user/foo

When Clojure reads the previous form, the compiler adds :testdata to
the metadata for the var foo:
(meta #'foo)

{:ns #<Namespace user>, :name foo, :file "NO_SOURCE_FILE",
:Tine 6, :testdata true}

The with-meta adds :order to the value [1 2 3], which is then bound to foo:

(meta foo)
= {:order :ascending}

As a general rule, use the metadata reader macro to add metadata to
vars and parameters. Use with-meta to add metadata to data.!?

2.8 Wrapping Up

This has been a long chapter. But think how much ground you have
covered: you can instantiate basic literal types, define and call func-
tions, manage namespaces, and read and write metadata. You can write
purely functional code, and yet you can easily introduce side effects

13. As with any good rule, there are exceptions. Inside a macro definition you may need to
use with-meta to add metadata to vars. See Section 7.5, Making a Lancet DSL, on page 235
for an example.

CLicK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Programming Clojure’s Home Page
http://pragprog.com/titles/shcloj
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: pragprog.com/titles/shcloj.

ContoctUs

Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com
Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/shcloj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/shcloj
www.pragprog.com/catalog

