
Extracted from:

Programming Clojure, Third Edition

This PDF file contains pages extracted from Programming Clojure, Third Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Clojure, Third Edition

Alex Miller
with Stuart Halloway

and Aaron Bedra

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-246-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Generative Function Testing
Classic example-based unit testing relies on the programmer to test a function
by writing a series of example inputs, then writing assertions about the return
value when the function is invoked with each input.

In comparison, generative testing is a technique that produces thousands of
random inputs, runs a procedure, and verifies a set of properties for each
output. Generative testing is a great technique for getting broader test coverage
of your code.

Spec can automatically perform generative testing for functions that have
function specs. Let’s see how that’s done and then explore ways to influence
those tests for more accurate coverage.

Checking Functions
Spec implements automated generative testing with the function check in the
namespace clojure.spec.test.alpha (commonly aliased as stest). You can run stest/check
on any symbol or symbols that have been spec’ed with s/fdef.

Including the test.check Library

All invocations of spec generators (either directly or within stest/instrument, stest/check,
etc.) require including the test.check library as a dependency, typically as either a test
or dev profile dependency, so that it’s not included at production runtime.

When you invoke check, it generates 1000 sets of arguments that are valid
according to the function’s :args spec. For each argument set, check invokes
the function, then checks that the return value is valid according to the :ret
spec and that the :fn spec is valid for the arguments and return value.

Let’s see how it works with a spec for the Clojure core function symbol, which
takes a name and an optional namespace:

(doc symbol)
| -------------------------
| clojure.core/symbol
| ([name] [ns name])
| Returns a Symbol with the given namespace and name.

First we need to define the function spec:

src/examples/spec.clj
(s/fdef clojure.core/symbol

:args (s/cat :ns (s/? string?) :name string?)
:ret symbol?

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/shcloj3/code/src/examples/spec.clj
http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

:fn (fn [{:keys [args ret]}]
(and (= (name ret) (:name args))

(= (namespace ret) (:ns args)))))

And then we can run the test as follows:

(stest/check 'clojure.core/symbol)
-> ({:sym clojure.core/symbol

:spec #object[clojure.spec.alpha$fspec_impl$reify__14282 ...],
:clojure.spec.test.check/ret {

:result true,
:num-tests 1000,
:seed 1485241441400}})

You can see from the output that stest/check ran 1000 tests on clojure.core/symbol
and found no problems. When an error occurs, the test.check library goes
the extra step of “shrinking” the error to the least complicated possible input
that still fails. In complex tests, this is a crucial step to produce tractable
input for reproduction and fixing.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

One step that we glossed over is how spec generated 1000 random input argu-
ments. While we haven’t mentioned it before, every spec is both a validator and
a data generator for values that match the spec. Once we created a spec for the
function arguments, check was able to use it to generate random arguments.

Generating Examples
The argument spec we used above was (s/cat :ns (s/? string?) :name string?). To simulate
how check generates random arguments from that spec, we can use the s/exercise
function, which produces pairs of examples and their conformed values:

(s/exercise (s/cat :ns (s/? string?) :name string?))
-> ([("" "") {:ns "", :name ""}]

[("F" "") {:ns "F", :name ""}]
[("s" "73") {:ns "s", :name "73"}]
[("u") {:name "u"}]
[("") {:name ""}]
[("" "3y") {:ns "", :name "3y"}]
[("t" "9pudu") {:ns "t", :name "9pudu"}]
[("Xhw25" "nPR7C9C") {:ns "Xhw25", :name "nPR7C9C"}]
[("FXs3E" "N") {:ns "FXs3E", :name "N"}]
[("UhUN5dZK1" "le8") {:ns "UhUN5dZK1", :name "le8"}])

This example works, but sometimes spec can’t automatically create a valid
generator, or you need to create a custom generator for related arguments.
In the following sections, we’ll see how to address these issues. First, let’s
consider a case where an s/and spec doesn’t produce any values.

Combining Generators With s/and
One of the most common ways to compose specs is with s/and. The s/and oper-
ation uses the generator of its first component spec, then filters the values
by each subsequent component spec.

For example, consider the following spec for an odd number greater than 100:

(defn big? [] (> x 100))

(s/def ::big-odd (s/and odd? big?))

This would work as a spec, but its automatic generator doesn’t work:

(s/exercise ::big-odd)
-> Unable to construct gen at: [] for: odd?

The problem is that while many common Clojure predicates have automatically
mapped generators, the predicates we’re using here do not. The odd? predicate
works on more than one numeric type and so is not mapped to a generator.
The big? predicate is a custom predicate that will never have mappings.

• Click HERE to purchase this book now. discuss

Generative Function Testing • 7

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

To fix this, we need to add an initial predicate that has a mapped genera-
tor—the type-oriented predicates are all good choices for that. Let’s insert int?
at the beginning:

(s/def ::big-odd-int (s/and int? odd? big?))
-> ::big-odd-int

(s/exercise ::big-odd-int)
-> ([1367 1367]

[7669 7669]
[171130765 171130765]
...)

When you debug generators for s/and specs, remember that only the first compo-
nent spec’s generator is used. Another related problem with s/and generators is
when the component specs after the first one are too “sparse”, filtering so
many values that the generator would have to work for a long time to generate
a valid one. The best way to solve this problem is with a custom generator.

Creating Custom Generators

There are many cases where the automatic generator is either inefficient or
will not produce related values that are useful. For example, a function might
take two arguments—a collection and an element from that collection. An
automatic generator is unlikely to independently produce valid combinations
of values. Instead, you need to supply your own custom generator that satisfies
this constraint.

You have a number of opportunities in spec to replace the automatically
created generator with your own implementation. Some specs like s/coll-of,
s/map-of, s/every, s/every-kv, and s/keys accept a custom generator option.

Also, you can explicitly add a replacement generator to any existing spec with
s/with-gen. And you can temporarily override a generator by name or path with
generator overrides in some functions like s/exercise, stest/instrument, and
stest/check—those overrides take effect only for the duration of the call.

We can create generators in several ways. The simplest way is to first create
a different spec, then use s/gen to retrieve its generator. Alternately, the clo-
jure.spec.gen.alpha namespace, typically aliased as gen, contains other generators
and functions to combine generators. The generators in this namespace are
wrappers around the test.check library, so you need that library on your
classpath to do any work with generators.

Let’s look at how we can supply a replacement generator for :marble/color to
hard-code exactly the color to return. Occasionally this is useful to reduce

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

the randomness of your inputs or to directly supply a complex input that
would be difficult to generate.

Here we use s/with-gen to override the default generator for :marble/color (which
produces marbles of all colors) and replace it with a generator that only pro-
duces red marbles:

(s/def :marble/color-red
(s/with-gen :marble/color #(s/gen #{:red})))

-> :marble/color-red

(s/exercise :marble/color-red)
-> ([:red :red] [:red :red] [:red :red] ...)

The clojure.spec.gen.alpha namespace contains many functions to generate all of
the standard Clojure types, collections, and more. One function it provides
(gen/fmap) allows you to start from a source generator, then modify each gener-
ated value by applying another function.

For example, to generate strings that start with a standard prefix, you can
generate the random suffix, then concatenate the prefix. The generator itself
might look like this:

(require '[clojure.string :as str])

(s/def ::sku
(s/with-gen (s/and string? #(str/starts-with? % "SKU-"))

(fn [] (gen/fmap #(str "SKU-" %) (s/gen string?)))))

Here, gen/fmap starts with a source generator (the generator for any valid string),
then applies a function to the generated values to prefix the random string with
"SKU-". That generator is then attached to the spec. Let’s try exercising it:

(s/exercise ::sku)
-> (["SKU-" "SKU-"] ["SKU-P" "SKU-P"] ["SKU-L56" "SKU-L56"] ...)

You now know how to adjust your specs to create better generators, and when
necessary, how to replace your generators with your own custom implemen-
tations. With these tools, you can create good argument specs for your func-
tions and automatically test your functions with generative testing.

• Click HERE to purchase this book now. discuss

Generative Function Testing • 9

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

