
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introduction
Clojure is a dynamic programming language for the Java Virtual Machine
(JVM) with a compelling combination of features:

• Clojure is elegant. Clojure’s clean, careful design lets you write programs
that get right to the essence of a problem, without a lot of clutter and
ceremony.

• Clojure is interactive. Clojure builds on the tradition of Lisp so that you
are always working with running code and immediate feedback.

• Clojure is a functional language. Data structures are immutable, and most
functions are free from side effects. This makes it easier to write correct
programs and to compose large programs from smaller ones.

• Clojure simplifies concurrent programming. Many languages build a con-
currency model around locking, which is difficult to use correctly. Clojure
provides several alternatives to locking: software transactional memory,
agents, atoms, and dynamic variables.

• Clojure embraces Java. Calling from Clojure to Java is direct and fast,
with no translation layer.

• Unlike many popular dynamic languages, Clojure is fast. Clojure is written
to take advantage of the optimizations possible on modern JVMs.

Many other languages cover some of the features described in the previous
list. Of all these languages, Clojure stands out. These features are not only
interesting in themselves, they also reinforce each other. For example, Clojure’s
use of immutable data and functions without side effects are essential for
safe concurrency. We will cover all these features and more in Chapter 1,
Getting Started, on page ?.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

Who This Book Is For
Clojure is a powerful, general-purpose programming language. As such, this
book is for programmers with experience in a programming language like
Java, JavaScript, C#, Python, or Ruby, but new to Clojure and looking for a
powerful, elegant language.

Clojure is built on top of the Java Virtual Machine, and it is fast. This book
will be of particular interest to Java programmers who want the expressiveness
of a dynamic language without compromising on performance.

Clojure is helping to redefine what features belong in a general-purpose lan-
guage. Clojure combines ideas from Lisp, functional programming, and con-
current programming and makes them more approachable to programmers
seeing these ideas for the first time. Since Clojure was created, many languages
like Java, JavaScript, Elixir, and Swift have adopted features inspired by
Clojure.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#,
Haskell, and Scala have garnered attention recently for their support of
functional programming or their concurrency model. Enthusiasts of these
languages will find much common ground with Clojure.

What’s in This Book
Chapter 1, Getting Started, on page ? demonstrates Clojure’s elegance as a
general-purpose language, plus the functional style and concurrency model
that make Clojure unique. It also walks you through installing Clojure and
developing code interactively at the REPL (Read Eval Print Loop).

Chapter 2, Exploring Clojure, on page ? is a breadth-first overview of all of
Clojure’s core constructs. After this chapter, you’ll be able to read most day-
to-day Clojure code.

Chapter 3, Developing Interactively, on page ? explores a crucial part of the
Clojure experience—interactive development at the REPL, constantly loading
and evaluating code as you write it.

The next two chapters cover functional programming. Chapter 4, Unifying
Data with Sequences, on page ? shows how all data can be unified under
the powerful sequence metaphor.

Chapter 5, Functional Programming, on page ? shows you how to write
functional code in the same style used by the sequence functions and intro-
duces the concepts of transducers.

Introduction • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

Chapter 6, Describing Your Data with Specs, on page ? demonstrates how
to write specifications for your data structures and functions and use them
to aid in development and testing.

Chapter 7, State and Concurrency, on page ? delves into Clojure’s concur-
rency model. Clojure provides four powerful constructs for dealing with con-
currency, plus all of the tools in Java’s concurrency libraries.

Chapter 8, Protocols and Datatypes, on page ? walks through records, types,
and protocols in Clojure. Records and types allow you to create your own
custom data types, and protocols provide functions that dispatch to imple-
mentations based on types.

the (as yet) unwritten Chapter 9, Multimethods, covers one of Clojure’s answers
to polymorphism. Polymorphism usually means “take the class of the first
argument and dispatch a method based on that.” Clojure’s multimethods let
you choose any function of all the arguments and dispatch based on that.

the (as yet) unwritten Chapter 10, Java Interop, shows you how to call Java
from Clojure and call Clojure from Java. You’ll see how to take Clojure straight
to the metal and get Java-level performance.

the (as yet) unwritten Chapter 11, Macros, shows off Lisp’s signature feature.
Macros take advantage of the fact that Clojure code is data to provide
metaprogramming abilities that are difficult or impossible in anything but a
Lisp.

Chapter 12, Project Tooling, on page ? covers the tools available to manage
dependencies, run tests, and debug your code.

Finally, the (as yet) unwritten Chapter 13, Building an Application, provides
a view into a complete Clojure workflow. You will build an application from
scratch, working through solving the various parts to a problem and thinking
about simplicity and quality.

How to Read This Book
All readers should begin by reading the first three chapters in order. Pay
particular attention to Simplicity and Power in Action, on page ?, which
provides an overview of Clojure’s advantages.

Experiment continuously. Clojure provides an interactive environment where
you can get immediate feedback; see Using the REPL, on page ? for more
information.

• Click HERE to purchase this book now. discuss

How to Read This Book • v

http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

After you read the first three chapters, skip around as you like. But read
Chapter 4, Unifying Data with Sequences, on page ? before you read Chapter
7, State and Concurrency, on page ?. These chapters lead you from Clojure’s
immutable data structures to a powerful model for writing correct concurrency
programs.

For Functional Programmers
• Clojure’s approach to FP strikes a balance between academic purity and

the realities of execution on the current generation of JVMs. Read Chapter
5, Functional Programming, on page ? carefully to understand how
Clojure idioms differ from languages such as Haskell.

• The concurrency model of Clojure (Chapter 7, State and Concurrency, on
page ?) provides several explicit ways to deal with side effects and state
and will make FP appealing to a broader audience.

For Java/C# Programmers
• Read Chapter 2, Exploring Clojure, on page ? carefully. Clojure has very

little syntax (compared to Java or C#), and we cover the ground rules
fairly quickly.

• If you wish to make use of Java libraries you already have, read the (as
yet) unwritten Chapter 10, Java Interop, to learn how to call or extend
Java from Clojure, and pass compatible data between them.

• Pay close attention to macros in the (as yet) unwritten Chapter 11, Macros,
. These are the most alien part of Clojure when viewed from a Java or C#
perspective.

For Lisp Programmers
• Some of Chapter 2, Exploring Clojure, on page ? will be review, but read

it anyway. Clojure preserves the key features of Lisp, but it breaks with
Lisp tradition in several places, and they are covered here.

• Pay close attention to the lazy sequences in Chapter 5, Functional Pro-
gramming, on page ?.

• If you like Emacs, it has several modes that provide extensive support for
Clojure, including REPL support, paredit, static analysis, debugging, and
much more.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

For Perl/Python/Ruby Programmers
• Read Chapter 7, State and Concurrency, on page ? carefully. Intraprocess

concurrency is very important in Clojure.

• Embrace macros (the (as yet) unwritten Chapter 11, Macros,). But do not
expect to easily translate metaprogramming idioms from your language
into macros. Remember always that macros execute at compile time, not
runtime.

Notation Conventions
The following notation conventions are used throughout the book.

Literal code examples use the following font:

(+ 2 2)

The result of executing a code example is preceded by ->.

(+ 2 2)
-> 4

Where console output cannot easily be distinguished from code and results,
it’s preceded by a pipe character (|).

(println "hello")
| hello
-> nil

When introducing a Clojure function for the first time, we’ll show the grammar
for the function like this:

(example-fn required-arg)
(example-fn optional-arg?)
(example-fn zero-or-more-arg*)
(example-fn one-or-more-arg+)
(example-fn & collection-of-variable-args)

The grammar is informal, using ? for optional, * for 0 or more, + for 1 or more,
and & as a marker before a collection of variable arguments.

Clojure code is organized into namespaces. Where examples in the book
depend on a namespace that’s not part of the Clojure core, we document that
dependency with a require form that loads the namespace:

(require '[clojure.java.io :as io])
(io/file "hello.txt")
-> #object[java.io.File 0x11eadcba "hello.txt"]

• Click HERE to purchase this book now. discuss

Notation Conventions • vii

http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

Here, the clojure.java.io namespace is required and aliased as io. Clojure returns
nil from a successful call to require—for brevity, this is omitted from the example
listings.

While reading the book, you’ll enter code in an interactive environment called
the REPL. The REPL prompt looks like this:

user=>

The user in the prompt indicates the namespace you’re currently working in. For
most of the examples, the current namespace is irrelevant. Where the namespace
is irrelevant, we use the following syntax for interaction with the REPL:

(+ 2 2) ; input line without namespace prompt
-> 4 ; return value

In those instances where the current namespace is important, we use this:

user=> (+ 2 2) ; input line with namespace prompt
-> 4 ; return value

Online Resources
Programming Clojure’s official home on the web is the Programming Clojure
home page1 at the Pragmatic Bookshelf website. From there, you can order
electronic copies of the book or offer feedback by submitting errata entries
or posting in the forums.2

The sample code for the book is also available from this page and is updated
to match each release of the book. Individual examples are in the examples
directory, unless otherwise noted.

Throughout the book, listings begin with their filename and a link if reading
the book in PDF form. For example, the following listing comes from src/exam-
ples/preface.clj:

src/examples/preface.clj
(println "hello")

With the sample code in hand, you are ready to get started. We’ll begin by
meeting the combination of features that make Clojure unique.

1. https://www.pragprog.com/titles/shcloj4/
2. https://devtalk.com/books/programming-clojure-fourth-edition/

Introduction • viii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/shcloj4/code/src%2Fexamples%2Fpreface.clj
https://www.pragprog.com/titles/shcloj4/
https://devtalk.com/books/programming-clojure-fourth-edition/
http://pragprog.com/titles/shcloj4
http://forums.pragprog.com/forums/shcloj4

