
Extracted from:

Machine Learning in Elixir
Learning to Learn with Nx and Axon

This PDF file contains pages extracted from Machine Learning in Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Machine Learning in Elixir
Learning to Learn with Nx and Axon

Sean Moriarity

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-034-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—July 19, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 10

Forecast the Future
In the previous chapter, you were introduced to the concept of recurrent
neural networks for learning on sequential data. Specifically, you created and
trained recurrent neural networks on text data using Elixir and Axon. You
saw how recurrent neural networks are capable of learning relationships in
natural language far easier than traditional feed-forward networks due to
their built-in memory and inherent sequential operation.

Recurrent Neural Networks are well-suited for processing text. However, that’s
not the only thing they’re good for. Anything with temporal nature presents
challenges for traditional feed-forward networks and is a well-suited challenge
for recurrent neural networks. One example of such data is timeseries data.
Timeseries data is any collection of data indexed in time order. At each
timestep, there are one or many observations. You can see how timeseries
data lends itself naturally to working with recurrent neural networks.

In this chapter, you’ll work with timeseries data in Elixir, Nx, and Axon. You’ll
learn about some of the challenges of working with timeseries data and a bit
about why neural networks struggle so much with timeseries data compared
to other approaches. You’ll also train both a convolutional and recurrent
neural network on a timeseries analysis problem, comparing the results and
learning the benefits and drawbacks of each strategy.

Predicting Stock Prices
Perhaps one of the most obvious applications of timeseries analysis is fore-
casting the direction of markets. Given enough historical data, you should
be able to predict the future performance of a given equity or market, right?
As you’ll find out later in this chapter, the problem of forecasting markets is
exceptionally difficult. If it was as easy as throwing a neural network at the
problem, everybody would be doing it—and then it wouldn’t be so easy any-

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

more. Despite the challenges, attempting to forecast stock prices is a good
exercise in timeseries analysis, and a good demonstration of the pitfalls of
putting too much faith in a model.

In this example, you’ll be working with the historical stock data for 30 com-
panies in the Dow Jones Industrial Average between 2006 and 2018. The
data is available for download on Kaggle1. After you download the data, you’ll
see a collection of CSVs that contain information for the prices of individual
stocks and for all of the stocks. To simplify the problem, you’ll create a model
that predicts the future stock prices for a single stock, in this case AAPL.

Start by firing up a new Livebook and adding the following dependencies:

Mix.install([
{:explorer, "~> 0.5.0"},
{:nx, "~> 0.5"},
{:exla, "~> 0.5"},
{:axon, "~> 0.5"},
{:vega_lite, "~> 0.1.6"},
{:kino, "~> 0.8.0"},
{:kino_vega_lite, "~> 0.1.7"}

])

It’s common to alias the VegaLite module to Vl, so run the following code in
a new cell:

alias VegaLite, as: Vl

To simplify the process of working with the structured CSV data, you’ll use
Explorer, Elixir’s DataFrame library. You’ll use Nx and EXLA for numerical
computing and acceleration, respectively, and you’ll need Axon for the deep
learning implementation. You’ll also use VegaLite, Kino, and Kino.VegaLite
for providing some functionality to visualize and summarize your dataset.

Before diving in, take some time to get familiar with the data. Start by loading
it into a DataFrame using Explorer, like so:

csv_file = "all_stocks_2006-01-01_to_2018-01-01.csv"
df = Explorer.DataFrame.from_csv!(csv_file, parse_dates: true)

After running the code, you’ll see the following output:

#Explorer.DataFrame<
Polars[93612 x 7]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Open float [77.76, 79.49, 78.41, 78.64, 78.5, ...]
High float [79.35, 79.49, 78.65, 78.9, 79.83, ...]

1. https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231

• 4

• Click HERE to purchase this book now. discuss

https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231
http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

Low float [77.24, 78.25, 77.56, 77.64, 78.46, ...]
Close float [79.11, 78.71, 77.99, 78.63, 79.02, ...]
Volume integer [3117200, 2558000, 2529500, ...]
Name string ["MMM", "MMM", "MMM", "MMM", "MMM", ...]

>

The dataset consists of opening, low, high, and closing prices on each trading
day for a handful of stock tickers. You’ll notice there’s no intraday data and
no auxiliary information aside from trading volume. Auxiliary information or
side information is information you have access to outside of the target you’re
trying to predict. Rather than use side information, you’re forced to make use
only of past timesteps to predict future timesteps in an autoregressive manner.
Autoregression means you’re going to predict future values from existing
values.

For the purposes of this problem, you’ll pay attention to only a ticker’s closing
prices, so you can filter out the other irrelevant information:

df = Explorer.DataFrame.select(df, ["Date", "Close", "Name"])

After doing so, you’ll see the following output:

#Explorer.DataFrame<
Polars[93612 x 3]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Close float [79.11, 78.71, 77.99, 78.63, 79.02, ...]
Name string ["MMM", "MMM", "MMM", "MMM", "MMM", ...]

>

Next, run the following code to get a visualization of the various stock tickers
using VegaLite:

Vl.new(title: "DJIA Stock Prices", width: 640, height: 480)
|> Vl.data_from_values(Explorer.DataFrame.to_columns(df))
|> Vl.mark(:line)
|> Vl.encode_field(:x, "Date", type: :temporal)
|> Vl.encode_field(:y, "Close", type: :quantitative)
|> Vl.encode_field(:color, "Name", type: :nominal)
|> Kino.VegaLite.new()

And you’ll see the following rendered image:

• Click HERE to purchase this book now. discuss

Predicting Stock Prices • 5

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

April JulyOctober2007 April JulyOctober2008 April JulyOctober2009 April JulyOctober2010 April JulyOctober2011 April JulyOctober2012 April JulyOctober2013 April JulyOctober2014 April JulyOctober2015 April JulyOctober2016 April JulyOctober2017 April JulyOctober

Date

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1,000

1,050

1,100

1,150

1,200

C
lo

se

AABA
AAPL
AMZN
AXP
BA
CAT
CSCO
CVX
DIS
GE
GOOGL
GS
HD
IBM
INTC
JNJ
JPM
KO
MCD
MMM
MRK
MSFT
NKE
PFE
PG
TRV
UNH
UTX
VZ
…2 entries

Name

DJIA Stock Prices

This image is, admittedly, a bit noisy. For this problem, you’re only concerned
with the price of the AAPL stock, so you can filter your data accordingly:

aapl_df = Explorer.DataFrame.filter_with(df, fn df ->
Explorer.Series.equal(df["Name"], "AAPL")

end)

After you do, you’ll see the following output:

#Explorer.DataFrame<
Polars[3019 x 3]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Close float [10.68, 10.71, 10.63, 10.9, 10.86, ...]
Name string ["AAPL", "AAPL", "AAPL", "AAPL", "AAPL", ...]

>

Now, regenerate your original plot with only AAPL data:

Vl.new(title: "AAPL Stock Price", width: 640, height: 480)
|> Vl.data_from_values(Explorer.DataFrame.to_columns(aapl_df))
|> Vl.mark(:line)
|> Vl.encode_field(:x, "Date", type: :temporal)
|> Vl.encode_field(:y, "Close", type: :quantitative)
|> Kino.VegaLite.new()

And you’ll see the following rendered image:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

April JulyOctober2007 April JulyOctober2008 April JulyOctober2009 April JulyOctober2010 April JulyOctober2011 April JulyOctober2012 April JulyOctober2013 April JulyOctober2014 April JulyOctober2015 April JulyOctober2016 April JulyOctober2017 April JulyOctober

Date

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

C
lo

se

AAPL Stock Price

Now it’s time to start preparing the data for model training.

First, notice that your dataset consists of unnormalized stock prices.
Remember that it’s important to normalize data before you feed it into your
neural network for training. Run the following code to normalize your
DataFrame of AAPL stock prices:

normalized_aapl_df = Explorer.DataFrame.mutate_with(aapl_df, fn df ->
var = Explorer.Series.variance(df["Close"])
mean = Explorer.Series.mean(df["Close"])
centered = Explorer.Series.subtract(df["Close"], mean)
norm = Explorer.Series.divide(centered, var)
["Close": norm]

end)

You can replot your graph to verify that the pattern remains the same despite
the normalization:

• Click HERE to purchase this book now. discuss

Predicting Stock Prices • 7

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

April JulyOctober2007 April JulyOctober2008 April JulyOctober2009 April JulyOctober2010 April JulyOctober2011 April JulyOctober2012 April JulyOctober2013 April JulyOctober2014 April JulyOctober2015 April JulyOctober2016 April JulyOctober2017 April JulyOctober

Date

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

C
lo

se

AAPL Stock Price

Next, you need to split your model between training and testing sets. In pre-
vious chapters, there was usually a clear delineation in input features and
targets. That’s not necessarily the case in this problem. In timeseries analysis,
your goal is to predict either a single step or multiple steps in the future. You
can make this prediction based on a range of historical inputs or based on
the current timestep. In this example, you’ll perform both single-step using
a range of historical values.

You’ll also need to divide your dataset into training and test sets. Start by
creating the following window/3 function in a new module:

defmodule Data do
def window(inputs, window_size, target_window_size) do

inputs
|> Stream.chunk_every(window_size + target_window_size, 1, :discard)
|> Stream.map(fn window ->
features =

window
|> Enum.take(window_size)
|> Nx.tensor()
|> Nx.new_axis(1)

targets =
window
|> Enum.drop(window_size)
|> Nx.new_axis(1)

{features, targets}
end)

end

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

end

The window/3 method takes an Enumerable or stream, an input window size,
and a target window size. It then returns a new stream, where each element
is a tuple of tensors with features and targets.

The features tensor is comprised of window_size prices from the last window_size
days. The targets tensor is comprised of target_window_size prices from target_win-
dow_size days after the input window. Notice that for both features and targets
you need to add a new axis. Recall from Representing the World, on page ?,
timeseries data is typically represented in three-dimensions with shape {batch,
timesteps, features}. For this example, you only have a single feature—price—and
you’re only predicting a single feature: price.

Next, add the following batch/2 function to your data module:

def batch(inputs, batch_size) do
inputs
|> Stream.chunk_every(batch_size)
|> Stream.map(fn windows ->

{features, targets} = Enum.unzip(windows)
{Nx.stack(features), Nx.stack(targets)}

end)
end

The batch/2 method converts your input windows into batches of input windows
by stacking features and targets on top of one-another. You can now use
these methods to create new training and testing sets. But, how do you split
up your data into training and test sets?

In the past, you randomly split your dataset into some percentage of training
and testing data. You’re able to shuffle split your dataset somewhat naively
because your data does not have any temporal dependencies. With a time-
series dataset, you have a bunch of potentially overlapping dependencies,
which means you can leak information about your test set into the training
process. Leakage isn’t good, and it can result in overconfidence and deploy-
ment of bad models.

An alternative approach is to split your dataset temporally. For this example,
you have 10 years worth of data, so you can take the first eight years as
training data, and the last two years as testing data. While this approach is
better, it’s important to understand that there are still drawbacks. Certain
time-series analysis problems, like stock price prediction, are often dependent
on unseen macro windows. Your model may appear really good at predicting
the price of a stock because the market was in the middle of a very consistent

• Click HERE to purchase this book now. discuss

Predicting Stock Prices • 9

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

bull run. However, if that fundamental macro trend changes for the test set,
you’ll have a garbage model.

A challenge with time-series analysis is that there are often confounding
variables at play, and without access to that information, it can be difficult
to get an accurate model. You need to be extremely careful when evaluating
time-series models to ensure you’ve eliminated most possible sources of bias.

For this example, after looking at the plot of AAPL stock over the last 10 years,
you can see the general trend: AAPL stock goes up. The macro trends between
the training and testing set are relatively similar. However, that doesn’t nec-
essarily mean you’ll end up with a model that’s good at predicting stock prices
for 2023 or 2024. One consideration when doing time-series analysis is that
you will constantly need to re-train and update trends. The world is chaotic,
and the future isn’t easy to predict.

To split your data into training and test sets, run the following code:

train_df = Explorer.DataFrame.filter_with(normalized_aapl_df, fn df ->
Explorer.Series.less(df["Date"], Date.new!(2016, 1, 1))

end)

test_df = Explorer.DataFrame.filter_with(normalized_aapl_df, fn df ->
Explorer.Series.greater_equal(df["Date"], Date.new!(2016, 1, 1))

end)

After doing so, you’ll see the following output:

#Explorer.DataFrame<
Polars[503 x 3]
Date date [2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, ...]
Close float [105.35, 102.71, 100.7, 96.45, 96.96, ...]
Name string ["AAPL", "AAPL", "AAPL", "AAPL", "AAPL", ...]

>

Now, convert your DataFrames to batches of windowed tensors using your
data module by running the following code:

window_size = 30
batch_size = 32

train_prices = Explorer.Series.to_list(train_df["Close"])
test_prices = Explorer.Series.to_list(test_df["Close"])

single_step_train_data =
prices
|> Data.window(window_size, 1)
|> Data.batch(batch_size)

single_step_test_data =
prices

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

|> Data.window(window_size, 1)
|> Data.batch(batch_size)

You can confirm you’ve correctly created your datasets by taking samples
from each. If you run the following code in a new cell:

Enum.take(single_step_train_data, 1)

you will see:

[
{#Nx.Tensor<

f32[32][5][1]
[

[
[-0.027216043323278427],
[-0.027200918644666672],
[-0.02724125050008297],
[-0.02710512839257717],
[-0.027125295251607895]

],
...

]
>,
#Nx.Tensor<

f32[32][1][1]
[

[
[-0.026777423918247223]

],
[

[-0.026555592194199562]
],
...

>}
]

Now you have a dataset of training inputs and training outputs. Your inputs
are a sample of 5 days of closing prices, with the target being a single closing
price.

Now that you’ve built a dataset, it’s time to start training some neural net-
works.

• Click HERE to purchase this book now. discuss

Predicting Stock Prices • 11

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir

