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CHAPTER 10

Forecast the Future
In the previous chapter, you were introduced to the concept of recurrent
neural networks for learning on sequential data. Specifically, you created and
trained recurrent neural networks on text data using Elixir and Axon. You
saw how recurrent neural networks are capable of learning relationships in
natural language far easier than traditional feed-forward networks due to
their built-in memory and inherent sequential operation.

Recurrent neural networks are well-suited for processing text. However, that’s
not the only thing they’re good for. Anything with a temporal nature presents
challenges for traditional feed-forward networks and is better suited for
recurrent neural networks. One example of such data is time-series data.
Time-series data is any collection of data indexed in time order. At each
timestep, there are one or many observations. You can see how time-series
data lends itself naturally to working with recurrent neural networks.

In this chapter, you’ll work with time-series data in Elixir, Nx, and Axon.
You’ll learn about some of the challenges of working with time-series data
and a bit about why neural networks struggle so much with this data com-
pared to other approaches. You’ll also train both a convolutional and recurrent
neural network on a time-series analysis problem, comparing the results and
learning the benefits and drawbacks of each strategy.

Predicting Stock Prices
Perhaps one of the most obvious applications of time-series analysis is fore-
casting the direction of markets. Given enough historical data, you should
be able to predict the future performance of a given equity or market, right?
As you’ll find out later in this chapter, the problem of forecasting markets is
exceptionally difficult. If it were as easy as throwing a neural network at the
problem, everybody would be doing it. Despite the challenges, attempting to
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forecast stock prices is a good exercise in time-series analysis and a good
demonstration of the pitfalls of putting too much faith in a model.

In this example, you’ll be working with the historical stock data for 30 com-
panies in the Dow Jones Industrial Average between 2006 and 2018. The
data is available for download on Kaggle.1 After you download the data, you’ll
see a collection of CSVs that contain information for the prices of individual
stocks and for all of the stocks. To simplify the problem, you’ll create a model
that predicts the future stock prices for a single stock, in this case, AAPL.

Start by firing up a new Livebook and adding the following dependencies:

Mix.install([
{:explorer, "~> 0.5.0"},
{:nx, "~> 0.6"},
{:exla, "~> 0.6"},
{:axon, "~> 0.5"},
{:vega_lite, "~> 0.1.6"},
{:kino, "~> 0.8.0"},
{:kino_vega_lite, "~> 0.1.7"}

])

It’s common to alias the VegaLite module to Vl, so run the following code in
a new cell:

alias VegaLite, as: Vl

To simplify the process of working with the structured CSV data, you’ll use
Explorer, Elixir’s DataFrame library. You’ll use Nx and EXLA for numerical
computing and acceleration, respectively, and you’ll need Axon for the deep
learning implementation. You’ll also use VegaLite, Kino, and Kino.VegaLite
for providing some functionality to visualize and summarize your dataset.

Before diving in, take some time to get familiar with the data. Start by loading
it into a DataFrame using Explorer, like so:

csv_file = "all_stocks_2006-01-01_to_2018-01-01.csv"
df = Explorer.DataFrame.from_csv!(csv_file, parse_dates: true)

After running the code, you’ll see the following output:

#Explorer.DataFrame<
Polars[93612 x 7]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Open float [77.76, 79.49, 78.41, 78.64, 78.5, ...]
High float [79.35, 79.49, 78.65, 78.9, 79.83, ...]

1. https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231
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Low float [77.24, 78.25, 77.56, 77.64, 78.46, ...]
Close float [79.11, 78.71, 77.99, 78.63, 79.02, ...]
Volume integer [3117200, 2558000, 2529500, ...]
Name string ["MMM", "MMM", "MMM", "MMM", "MMM", ...]

>

The dataset consists of opening, low, high, and closing prices on each trading
day for a handful of stock tickers. You’ll notice there’s no intraday data and
no auxiliary information aside from trading volume. Auxiliary information, or
side information, is information you have access to outside of the target you’re
trying to predict. Rather than use side information, you’re forced to make use
only of past timesteps to predict future timesteps in an autoregressive manner.
Autoregression means you’re going to predict future values from existing
values.

For this problem, you’ll pay attention to only a ticker’s closing prices, so you
can filter out the other irrelevant information:

df = Explorer.DataFrame.select(df, ["Date", "Close", "Name"])

After doing so, you’ll see the following output:

#Explorer.DataFrame<
Polars[93612 x 3]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Close float [79.11, 78.71, 77.99, 78.63, 79.02, ...]
Name string ["MMM", "MMM", "MMM", "MMM", "MMM", ...]

>

Next, run the following code to get a visualization of the various stock tickers
using VegaLite:

Vl.new(title: "DJIA Stock Prices", width: 640, height: 480)
|> Vl.data_from_values(Explorer.DataFrame.to_columns(df))
|> Vl.mark(:line)
|> Vl.encode_field(:x, "Date", type: :temporal)
|> Vl.encode_field(:y, "Close", type: :quantitative)
|> Vl.encode_field(:color, "Name", type: :nominal)
|> Kino.VegaLite.new()

And you’ll see the rendered image on page 6.

This image is, admittedly, a bit noisy. For this problem, you’re only concerned
with the price of the AAPL stock, so you can filter your data accordingly:

aapl_df = Explorer.DataFrame.filter_with(df, fn df ->
Explorer.Series.equal(df["Name"], "AAPL")

end)

• Click  HERE  to purchase this book now.  discuss

Predicting Stock Prices • 5

http://pragprog.com/titles/smelixir
http://forums.pragprog.com/forums/smelixir


After you do so, you’ll see the following output:

#Explorer.DataFrame<
Polars[3019 x 3]
Date string ["2006-01-03", "2006-01-04", "2006-01-05", ...]
Close float [10.68, 10.71, 10.63, 10.9, 10.86, ...]
Name string ["AAPL", "AAPL", "AAPL", "AAPL", "AAPL", ...]

>

Now, regenerate your original plot with only AAPL data:

Vl.new(title: "AAPL Stock Price", width: 640, height: 480)
|> Vl.data_from_values(Explorer.DataFrame.to_columns(aapl_df))
|> Vl.mark(:line)
|> Vl.encode_field(:x, "Date", type: :temporal)
|> Vl.encode_field(:y, "Close", type: :quantitative)
|> Kino.VegaLite.new()

And you’ll see the rendered image on page 7.

Now it’s time to start preparing the data for model training.

First, notice your dataset consists of unnormalized stock prices. Remember it’s
important to normalize data before you feed it into your neural network for train-
ing. Run the following code to normalize your DataFrame of AAPL stock prices:

normalized_aapl_df = Explorer.DataFrame.mutate_with(aapl_df, fn df ->
var = Explorer.Series.variance(df["Close"])
mean = Explorer.Series.mean(df["Close"])
centered = Explorer.Series.subtract(df["Close"], mean)
norm = Explorer.Series.divide(centered, var)
["Close": norm]

end)
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You can replot your graph to verify that the pattern remains the same despite
the normalization:

Next, you need to split your model between training and testing sets. In pre-
vious chapters, a clear delineation usually was made between input features
and targets. That’s not necessarily the case in this problem. In time-series
analysis, your goal is to predict either a single step or multiple steps in the
future. You can make this prediction based on a range of historical inputs or
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based on the current timestep. In this example, you’ll perform single-step
predictions using a range of historical values.

You’ll also need to divide your dataset into training and test sets. Start by
creating the following window/3 function in a new module:

defmodule Data do
def window(inputs, window_size, target_window_size) do

inputs
|> Stream.chunk_every(window_size + target_window_size, 1, :discard)
|> Stream.map(fn window ->
features =

window
|> Enum.take(window_size)
|> Nx.tensor()
|> Nx.new_axis(1)

targets =
window
|> Enum.drop(window_size)
|> Nx.tensor()
|> Nx.new_axis(1)

{features, targets}
end)

end
end

The window/3 method takes an Enumerable or stream, an input window size,
and a target window size. It then returns a new stream, where each element
is a tuple of tensors with features and targets.

The features tensor is comprised of window_size prices from the last window_size
days. The targets tensor is comprised of target_window_size prices from target_
window_size days after the input window. Notice that for both features and targets
you need to add a new axis. Recall from Representing the World, on page ?,
time-series data is typically represented in three dimensions with shape {batch,
timesteps, features}. For this example, you only have a single feature—price—and
you’re only predicting a single feature—price.

Next, add the following batch/2 function to your data module:

def batch(inputs, batch_size) do
inputs
|> Stream.chunk_every(batch_size, :discard)
|> Stream.map(fn windows ->

{features, targets} = Enum.unzip(windows)
{Nx.stack(features), Nx.stack(targets)}

end)
end
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The batch/2 method converts your input windows into batches of input windows
by stacking features and targets on top of one another. You can now use
these methods to create new training and testing sets. But how do you split
up your data into training and test sets?

In the past, you randomly split your dataset into some percentage of training
and testing data. You’re able to split your dataset somewhat naively because
your data doesn’t have any temporal dependencies. With a time-series dataset,
you have a bunch of potentially overlapping dependencies, which means you
can leak information about your test set into the training process. Leakage
isn’t good, and it can result in overconfidence and the deployment of bad
models.

An alternative approach is to split your dataset temporally. For this example,
you have ten years’ worth of data, so you can take the first eight years as
training data and the last two years as testing data. While this approach is
better, it’s important to understand that there are still drawbacks. Certain
time-series analysis problems, like stock price prediction, are often dependent
on unseen macro windows. Your model may appear quite good at predicting
the price of a stock because the market was in the middle of a very consistent
bull run. However, if that fundamental macro trend changes for the test set,
you’ll have a garbage model.

A challenge with time-series analysis is there are often confounding variables
at play, and without access to that information, it can be difficult to get an
accurate model. You need to be extremely careful when evaluating time-series
models to ensure you’ve eliminated most of the possible sources of bias.

For this example, after looking at the plot of AAPL stock over the last ten
years, you can see the general trend: AAPL stock goes up. The macro trends
between the training and testing sets are relatively similar. However, that
doesn’t necessarily mean you’ll end up with a model that’s good at predicting
stock prices for 2023 or 2024. One consideration when doing time-series
analysis is that you’ll constantly need to retrain and update trends. The world
is chaotic, and the future isn’t easy to predict.

To split your data into training and test sets, run the following code:

train_df = Explorer.DataFrame.filter_with(normalized_aapl_df, fn df ->
Explorer.Series.less(df["Date"], Date.new!(2016, 1, 1))

end)

test_df = Explorer.DataFrame.filter_with(normalized_aapl_df, fn df ->
Explorer.Series.greater_equal(df["Date"], Date.new!(2016, 1, 1))

end)
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After doing so, you’ll see the following output:

#Explorer.DataFrame<
Polars[503 x 3]
Date date [2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, ...]
Close float [105.35, 102.71, 100.7, 96.45, 96.96, ...]
Name string ["AAPL", "AAPL", "AAPL", "AAPL", "AAPL", ...]

>

Now, convert your DataFrames to batches of windowed tensors using your
data module by running the following code:

window_size = 5
batch_size = 32

train_prices = Explorer.Series.to_list(train_df["Close"])
test_prices = Explorer.Series.to_list(test_df["Close"])

single_step_train_data =
prices
|> Data.window(window_size, 1)
|> Data.batch(batch_size)

single_step_test_data =
prices
|> Data.window(window_size, 1)
|> Data.batch(batch_size)

You can confirm you’ve correctly created your datasets by taking samples
from each. Run the following code in a new cell:

Enum.take(single_step_train_data, 1)

And you’ll see this:

[
{#Nx.Tensor<

f32[32][5][1]
[

[
[-0.027216043323278427],
[-0.027200918644666672],
[-0.02724125050008297],
[-0.02710512839257717],
[-0.027125295251607895]

],
...

]
>,
#Nx.Tensor<

f32[32][1][1]
[

[
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[-0.026777423918247223]
],
[

[-0.026555592194199562]
],
...

>}
]

Now you have a dataset of training inputs and training outputs. Your inputs
are a sample of five days of closing prices, with the target being a single
closing price.

Now that you’ve built a dataset, it’s time to start training some neural net-
works.
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