
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


Understanding Nx Tensors
Start by running the following code in a new Livebook cell:

Nx.tensor([1, 2, 3])

This generates the following output:

#Nx.Tensor<
s64[3]
[1, 2, 3]

>

You’ve just created a tensor using one of Nx’s creation methods. Nx.tensor/2 is the
easiest way to create a tensor from a number, a list of numbers, or a nested list
of numbers. Try creating a few more tensors using the following code:

a = Nx.tensor([[1, 2, 3], [4, 5, 6]])
b = Nx.tensor(1.0)
c = Nx.tensor([[[[[[1.0, 2]]]]]])
dbg(a)
dbg(b)
dbg(c)

This returns the following:

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:4: (file)]
a #=> #Nx.Tensor<

s64[2][3]
[

[1, 2, 3],
[4, 5, 6]

]
>
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[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:5: (file)]
b #=> #Nx.Tensor<

f32
1.0

>

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:6: (file)]
c #=> #Nx.Tensor<

f32[1][1][1][1][1][2]
[

[
[

[
[
[1.0, 2.0]

]
]

]
]

]
>

You’ll see three properties of a tensor every time you inspect its contents:
type, shape, and data. All of these properties make a tensor distinctly different
from a generic Elixir list.

Tensors Have a Type

Create and inspect two tensors by running the following code in a Livebook cell:

a = Nx.tensor([1, 2, 3])
b = Nx.tensor([1.0, 2.0, 3.0])
dbg(a)
dbg(b)

You’ll see the following output:

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:3: (file)]
a #=> #Nx.Tensor<

s64[3]
[1, 2, 3]

>

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:4: (file)]
b #=> #Nx.Tensor<

f32[3]
[1.0, 2.0, 3.0]

>

Do you notice a difference between the two tensors, aside from the difference
in data?
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Notice that tensor a displays s64, whereas tensor b displays f32. Both s64 and
f32 are the numeric type of the tensor’s data. If you’ve worked with types in
programming languages before, you’re likely familiar with some of the
numeric types Nx offers.

Nx types dictate how the underlying tensor data is interpreted during execution
and inspection. You’ll see in Tensors Have Data, on page 10, that tensor data
isn’t represented in an Elixir list, but instead as raw bytes. The tensor’s type
tells Nx how to interpret those raw bytes.

Tensor types are defined by a type class and a bit width. The type class can
be a signed integer, an unsigned integer, a float, or a brain float. Signed and
unsigned integers can have a bit width of 8, 16, 32, or 64. Floats can have
bit widths of 16, 32, or 64. Brain floats can only have a bit width of 16. Brain
floats are a special type of floating point number optimized for deep learning.
You can specify types when creating tensors using a tuple of {class, bit-width}.
The following table illustrates each type, their Elixir representation, and their
inspected string representation:

String RepresentationElixir RepresentationWidthsClass

s8, s16, s32, s64{:s, 8}, {:s, 16}, {:s, 32},
{:s, 64}

8, 16, 32, 64signed integer

u8, u16, u32, u64{:u, 8}, {:u, 16}, {:u, 32},
{:u, 64}

8, 16, 32, 64unsigned integer

f16, f32, f64{:f, 16}, {:f, 32}, {:f, 64}16, 32, 64float

bf16{:bf, 16}16brain float

c64, c128{:c, 64}, {:c, 128}64, 128complex

Notice that you specify a type’s class with an atom. If you’re familiar with
Elixir, you know an atom is a constant whose values are their own name.
You then specify the type’s bit width. This dictates the size each element of
the tensor occupies in memory. For example, each element in a signed 64-bit
tensor occupies 64 bits or 8 bytes of memory. Larger bit-width types are more
numerically precise, which means you can represent a larger range of values
and not worry as much about underflow or overflow. Underflow occurs when
you try to represent a value that’s too small for a computer to represent in
storage. For example, create a tensor with the following code:

Nx.tensor(0.0000000000000000000000000000000000000000000001)
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You’ll see the following output:

#Nx.Tensor<
f32
0.0

>

But you didn’t want to create a tensor with a value of 0.0; you wanted a tensor
with a value of 1.0e-45. The value you’re trying to represent is underflowed to
0.0. A 32-bit float isn’t precise enough to store your value. If you increase the
bit width to 64, you’ll be able to properly represent the number you want.
You can tell Nx to use a specific type by passing the :type option to Nx.tensor/2:

Nx.tensor(1.0e-45, type: {:f, 64})

Running this code will return this:

#Nx.Tensor<
f64
1.0e-45

>

A 64-bit float occupies more memory and is thus able to store a larger range
of numbers. Overflow occurs when the number you are trying to store is too
large for the given type. This happens often with low-precision integer types.
For example, create a tensor using the following code:

Nx.tensor(128, type: {:s, 8})

Here, you’re trying to create a tensor with a value of 128 and a type of {:s, 8}
or a signed 8-bit integer tensor. After running the code, you’ll see the following:

#Nx.Tensor<
s8
-128

>

That’s surprising! A signed 8-bit integer tensor occupies 1 byte of memory
and can only represent values between -128 and 127. Anything outside of that
range will be squeezed to some value within the supported range, which
results in the behavior you see here.

Precision issues are common in machine learning because you’re often
working with floating-point types. Floating-point types attempt to capture a
large range of real values. But it’s not possible to fit an infinite range of
numbers into a finite amount of storage. You’ll sometimes see surprising
issues due to precision issues. Throughout this book, you’ll see code examples
that attempt to work around the limitations of floating-point numbers.
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As you may have noticed, tensors have a homogenous type. For every tensor
you’ve created, there’s always been a single type. You cannot have tensors
with mixed types. Nx will choose a default type capable of representing the
values you are trying to use when you create a tensor unless you explicitly
state otherwise by passing a :type parameter. You can see this default typing
in action by running the following code:

Nx.tensor([1.0, 2, 3])

This returns the following:

#Nx.Tensor<
f32[3]
[1.0, 2.0, 3.0]

>

Even though the last two values are integers, Nx cast them to floats because
the highest type was a floating-point value and Nx didn’t want you to unnec-
essarily lose precision.

Having homogenous types in an array programming library like Nx is necessary
for a couple of reasons. First, it eliminates the need to store additional infor-
mation about every value in the tensor. Second, it enables unique optimiza-
tions for certain algorithms. For example, imagine you want to compute the
index of the maximum value in a tensor of type {:s, 8}. Because you know that
every value in the tensor is a signed 8-bit integer, you also know that the
maximum possible value is 127. If you ever observe 127 in the tensor, you
can halt the algorithm without traversing the rest of the tensor because 127
is guaranteed to be maximal. Type-specific optimizations, such as this one,
are common in numerical computing.

Tensors Have Shape

You’ve probably noticed the nested list representation of data when inspecting
the contents of a tensor. However, tensor data isn’t stored as a list at all. The
nesting you see during inspection is actually a manifestation of the tensor’s
shape. A tensor’s shape is the size of each dimension in the tensor. Consider
the following tensors:

a = Nx.tensor([1, 2])
b = Nx.tensor([[1, 2], [3, 4]])
c = Nx.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

You can inspect each tensor with the following code:

dbg(a)
dbg(b)
dbg(c)
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You’ll see the following output:

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:1: (file)]
a #=> #Nx.Tensor<

s64[2]
[1, 2]

>

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:2: (file)]
b #=> #Nx.Tensor<

s64[2][2]
[

[1, 2],
[3, 4]

]
>

[#cell:d4okkentiv5fwvyryl47ypcqm4vkedbm:3: (file)]
c #=> #Nx.Tensor<

s64[2][2][2]
[

[
[1, 2],
[3, 4]

],
[
[5, 6],
[7, 8]

]
]

>

Notice the value next to each tensor’s type. That value is its shape. Shapes
in Nx are expressed using tuples of positive integer values. The representation
you see in the previous code example is a pretty-printed version of each ten-
sor’s shape. Tensor a has a shape of {2} because it has one dimension of size
2. Tensor b has shape {2, 2} because it has two dimensions, each of size 2.
Finally, tensor c has a shape of {2, 2, 2} because it has three dimensions, each
of size 2. Notice that as the number of dimensions increases, so does the
level of nesting in the inspected data.

The number of dimensions is typically referred to as the tensor’s rank. Again,
if you’re coming from a mathematical background, this use of the word rank
might confuse you. In the world of numerical computing, the rank corresponds
to the number of dimensions or the level of nesting in the tensor. Scalars
don’t have any level of nesting at all because they don’t have any shape. You
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can think of a scalar as a zero-dimensional tensor. A scalar is a single value.
Run the following in a new cell:

Nx.tensor(10)

And you’ll see the following output:

#Nx.Tensor<
s64
10

>

Notice there’s no output where the shape typically is shown. That’s because
this is a scalar tensor, and so it has no shape.

Then why do tensors need to have a shape? Remember, the point of tensors
is to have a flexible numeric representation of the outside world. If you were
to try to represent an image with no semblance of shape, it would be very
difficult.

Imagine you have a 28x28 RGB image. Images are typically represented with
a shape {num_images, height, width, channels} where channels corresponds to the
number of color channels in the image—three in this case for red, green, and
blue color values. If you were asked to access the green value of the tenth
pixel down and the 3rd pixel towards the center of the image, how would you
do that, given only a flat representation of the image? It wouldn’t be possible.
You would have no idea how the image is laid out in memory. Without any
information as to the shape of the image, you can’t even be sure how many
color channels the image has or what the height and width of the image are.

A tensor’s shape helps you naturally map tensors to and from the real world.
Also, a tensor’s shape tells you how to perform certain operations on the
tensor. For example, if tensors didn’t have any shape, there would be no way
to perform matrix multiplications between two tensors because you would
have no understanding of the size of each dimension in your matrices.

To more naturally map a tensor’s shape to the real world, Nx implements the
concept of named tensors. Named tensors introduce dimension or axis names
for more idiomatic tensor manipulation. For example, if you have an image,
you might have dimension names of :height, width, and :channels. Each dimension
name is an atom. You can use dimension names to perform operations on
specific dimensions. You can specify the names of a tensor on creation. For
example, run the following code:

Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
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And it will return the following output:

#Nx.Tensor<
s64[x: 2][y: 3]
[

[1, 2, 3],
[4, 5, 6]

]
>

Notice the shape representation now tells you the size and name of each
dimension. Rather than saying dimension 1, you can say dimension :y. Named
dimensions give semantic meaning to otherwise meaningless dimension
indices.

Tensors Have Data

As previously mentioned, tensor data is stored as a byte array or an Elixir
binary. A binary is an array of character bytes. These bytes are interpreted
as a nested list of values depending on the tensor’s shape and type. Repre-
senting tensor data in this way helps simplify many Nx implementations.
When you create a new tensor using Nx.tensor/2, Nx traverses the values in
each list and rewrites the value in a binary representation. To view this
binary representation, create a tensor with the following code:

a = Nx.tensor([[1, 2, 3], [4, 5, 6]])

Now, get the underlying binary representation using Nx.to_binary/1:

Nx.to_binary(a)

The results will be the following:

<<1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5,
0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0>>

Notice the binary representation has no semblance of shape or type. It’s liter-
ally a flat collection of byte values. Because Nx has to turn your data into a
binary representation when you use Nx.tensor/2, it’s more performant to instead
create tensors using Nx.from_binary/2:

<<1::64-signed-native, 2::64-signed-native, 3::64-signed-native>>
|> Nx.from_binary({:s, 64})

The <<>> syntax creates an Elixir binary. Note you can construct binaries in
the style shown using binary modifiers. The previous code creates the following
tensor:
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#Nx.Tensor<
s64[3]
[1, 2, 3]

>

Nx.from_binary/2 takes a binary and a type and creates a one-dimensional tensor
from the binary data. You can change the shape of the tensor using Nx.reshape/2:

<<1::64-signed-native, 2::64-signed-native, 3::64-signed-native>>
|> Nx.from_binary({:s, 64})
|> Nx.reshape({1, 3})

This returns the following output:

#Nx.Tensor<
s64[1][3]
[

[1, 2, 3]
]

>

Notice the usage of the native binary modifier. Because Nx operates at the byte
level, endianness matters. Endianness is the order in which bytes are inter-
preted or read in the computer. The native modifier tells the virtual machine to
use your system’s native endianness. If you’re attempting to read binary data
from a computer with a different endianness than your machine’s, you might
run into some problems. For the most part, you shouldn’t have to worry, but
it’s something to be conscious of if you need to work with a tensor’s raw data.

Tensors Are Immutable

One notable distinction between Nx and other numerical computing libraries
is that Nx tensors are immutable, which means that none of Nx’s operations
change the tensor’s underlying properties. Every operation returns a new
tensor with new data every time. In some situations, this can be expensive.
Nx overcomes the limitation of immutability by introducing a programming
model that enables Nx operator fusion. You’ll use this programming model
in Going from def to defn, on page ?.
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