
Extracted from:

Genetic Algorithms in Elixir
Solve Problems Using Evolution

This PDF file contains pages extracted from Genetic Algorithms in Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Genetic Algorithms in Elixir
Solve Problems Using Evolution

Sean Moriarity

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-794-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Not all problems are created equal. Every optimization problem you face will
inevitably have a unique set of challenges. However, this doesn’t mean that
you should approach every problem differently, as patterns will often arise
from one problem to the next.

A key aspect of problem solving is to model problems in a way that makes them
easier to understand and thus easier to solve. This might mean translating data
into formats that are easier to work with, choosing or creating data structures
that simplify solutions, or transforming the problem itself into a form you already
know. The steps you take at the beginning when planning your approach to
solving a specific problem are vital to finding its solution.

In the previous chapter, you designed a framework for writing genetic algo-
rithms. The framework you designed generalized the steps common to all
genetic algorithms. The purpose of this exercise was both to better understand
the structure of genetic algorithms and optimization problems and to make
it easier for you to write genetic algorithms in the future.

In the process of designing this framework, you separated problem-specific
aspects from more general aspects of genetic algorithms. In this chapter, you’ll
take a closer look at these problem-specific aspects and how to handle them.

Using Structs to Represent Chromosomes
The chromosomes you created in the previous chapters are enumerable objects
that represent solutions to a problem. At the most fundamental level, this is
correct; however, in practice, this isn’t a viable implementation.

Consider this: you’re attempting to solve a problem in which the age of the
chromosome determines its fitness. One reason you’d do this is to ensure
enough variance between generations. Ideally, you’d persist older chromosomes
between generations to a certain point, before killing them off once they’ve
reached a certain age. In this respect, you ensure an equal distribution of
both old and young chromosomes and, thus, naturally occurring variance in
the population. Solving a problem like this using only an Enum type to represent
a chromosome creates unnecessary complexity. It’s often the case that you
need a more robust data structure to keep track of a number of metrics at a
time. In Elixir, you can accomplish this task using a struct.

A struct is a map with a few additional features. Structs allow you to define
default values and required fields. They also cannot take on additional fields
after their creation.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

The guarantees that structs provide make them a perfect fit for defining cus-
tom types—without the fear of breaking your programs. With structs, you
can ensure that a predefined chromosome type is initialized with a predefined
set of genes—one that won’t break your genetic algorithms.

Creating a chromosome struct offers a number of conveniences that you
wouldn’t have if you simply used an Enum or some other data type to represent
a chromosome. For example, if you wanted to calculate the average fitness
of a population, you would need to recalculate the fitness of each individual
chromosome first, which can be a computationally expensive task. Using a
struct, however, you can save time by only calculating the fitness once, and
then storing it as a key-value pair within the struct itself.

Understanding Chromosomes

1 1 0 0 1 1 0

1

1

Chromosome

Gene

Allele

Before you’re ready to create a struct that models a chromosome, you first
need to understand what a chromosome is and what characteristics it has.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

At the most basic level, a chromosome is a single solution to your problem.
It’s a series of genes consisting of values known as alleles. Genes can represent
any number of things. For example, in the shipping problem introduced in
Chapter 1, Writing Your First Genetic Algorithm, on page ?, each gene rep-
resents a successive stop in a city. The entire chromosome, then, represents
a complete path to every city defined in the problem.

Genes are typically represented using list types or other enumerable data
types, like trees, sets, and arrays. In Elixir, the Enum library provides a number
of useful functions for manipulating any data type that implements the Enu-
merable protocol. In fact, the framework you wrote in the previous chapter
exclusively uses Enum library functions. Therefore, you can represent genes
using any data type that implements the Enumerable protocol—even ones that
are not part of the Elixir standard library.

While genes are the most fundamental piece of a chromosome, there are
several characteristics you can track for both convenience and functionality.
A basic chromosome struct could include fitness, size, and age on top of
genes. For simplicity, the chromosome struct in this book will consist of these
exact features. In later chapters, you’ll see the convenience that tracking
these characteristics can provide.

The characteristics you may choose to add to your chromosome struct have
no limits. Some problems may require additional features not described in
this chapter—the beauty of structs is in their flexibility. Choosing to represent
a chromosome in this manner gives you the ability to rapidly adjust what you
need for each problem.

Creating a Chromosome Struct
Open a terminal and navigate to the genetic/lib directory. From there, create a
new directory named types, as well as a new file named chromosome.ex, like this:

$ mkdir types
$ touch types/chromosome.ex

You’ll create the chromosome struct within types/chromosome.ex. Open the
types/chromosome.ex file and add the following code:

defmodule Types.Chromosome do

defstruct [:genes, :size, :fitness, :age]

end

• Click HERE to purchase this book now. discuss

Using Structs to Represent Chromosomes • 7

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

This code defines a module Types.Chromosome, which contains a struct consisting
of the keys :genes, :size, :fitness, and :age. Remember, defstruct is used to define a
new struct. The atoms that follow are the fields the struct contains. You can
create a new chromosome struct using the %Types.Chromosome syntax.

This version of the chromosome struct will work, but it lacks a bit of function-
ality. Currently, none of the fields have default values and there are no
required keys. This means that a newly created chromosome struct could
technically contain fields with all nil values.

Change the chromosome struct by adding defaults for :size, :fitness, and :age,
like this:

defstruct [:genes, size: 0, fitness: 0, age: 0]

Now, any newly created chromosome will have a default size, fitness, and age
of 0. You could technically make the default values whatever you want—it all
depends on what you’re trying to accomplish.

Finally, all chromosomes must contain genes. If a chromosome doesn’t have
any genes, it’s not really a chromosome. To make this chromosome require
genes, add the following code above defstruct:

@enforce_keys :genes

Your final module will look like this:

defmodule Types.Chromosome do

@enforce_keys :genes
defstruct [:genes, size: 0, fitness: 0, age: 0]

end

You can now create chromosome structs that track the genes, size, fitness,
and age of a chromosome in your populations.

Creating a Chromosome Type
Elixir is a dynamically typed language; however, it’s often useful to create
typespecs for custom data types. Typespecs are useful for documentation
and static code analysis using tools like dialyzer. This book won’t cover the use
of dialyzer, but you’ll use the types you create in this section later in the
chapter.

A typespec is defined using the @type attribute followed by the name and
definition of the type. Elixir supports compound types as well as the creation
of custom types using structs.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

You’ll create your chromosome type in the types/chromosome.ex file. Open the
types/chromosome.ex file and add the following code above the struct you defined
in the previous section:

@type t :: %__MODULE__{
genes: Enum.t,
size: integer(),
fitness: number(),
age: integer()

}

This code creates a custom type t, which is an instance of a Types.Chromosome
struct. The __MODULE__ keyword is a macro that gets replaced with the name
of the module in which it’s defined. t is a standard practice for defining module
types in Elixir.

The chromosome type also declares specific types for the fields of the chromo-
some. As mentioned previously, genes must be an Enum type. Size and age
are both integers. Fitness is a number, which is a built-in Elixir type represent-
ing a float or integer.

The final Chromosome module will look like this:

defmodule Types.Chromosome do

@type t :: %__MODULE__{
genes: Enum.t,
size: integer(),
fitness: number(),
age: integer()

}

@enforce_keys :genes
defstruct [:genes, size: 0, fitness: 0, age: 0]

end

Using Behaviours to Model Problems
Recall that one technique to solving problems is to transform them into a
form you already understand. While every problem seems different, and on
the surface may require different techniques to solve, they almost always
have patterns and similarities between them. This is especially true with the
problems you’ll solve with genetic algorithms.

The framework you built in Chapter 2, Breaking Down Genetic Algorithms,
on page ?, separates a few problem-specific parameters from the common
aspects of a genetic algorithm. These parameters are a fitness function, a
genotype, and termination criteria. This means that every problem you attempt

• Click HERE to purchase this book now. discuss

Using Behaviours to Model Problems • 9

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

to solve using a genetic algorithm must implement all three of these func-
tions—the nature of the framework creates a natural abstraction for problems.

An abstraction is a simplification of underlying complexities and implementa-
tions. The purpose of abstraction is to force you to think of things at different
levels of specificity. It gives you an idea of what to look for before you approach
a problem. This is especially useful when approaching new problems with
genetic algorithms. When you want to approach a new problem, you already
know that you need a fitness function, or a way to measure success; a geno-
type, or a way to represent solutions; and some termination criteria, or a way
to tell the algorithm when to stop. While the specifics are the difficult part,
you’re never starting from scratch with this abstraction in place.

Unfortunately, Elixir doesn’t feature abstract classes, interfaces, or traits like
other object-oriented languages. Instead, you can implement abstraction
using behaviours.

Mind the “u”

Elixir uses the British spelling of “behaviour.”

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

