
Extracted from:

Genetic Algorithms in Elixir
Solve Problems Using Evolution

This PDF file contains pages extracted from Genetic Algorithms in Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Genetic Algorithms in Elixir
Solve Problems Using Evolution

Sean Moriarity

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-794-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Preface
Genetic algorithms are a powerful and often overlooked tool for solving difficult
problems. Some of the most beautiful solutions to practical problems are
inspired by or modeled after solutions found in mother nature. Genetic algo-
rithms are no exception. Inspired by the original optimization algorithm—evo-
lution—genetic algorithms can be used to solve a variety of problems in a
variety of fields. As you’ll see in this book, genetic algorithms have applications
in finance, logistics, artificial intelligence, and more.

Unfortunately, despite being one of the first “artificial intelligence” algorithms,
there’s a surprising lack of resources available for programmers to explore
the ins and outs of using evolution to solve problems. Even still, there are no
books designed specifically with Elixir programmers in mind.

My goal in writing this book is to introduce Elixir programmers to a field of
programming they might have never been exposed to or were too intimidated
to try. Technology evolves rapidly, and programmers need to constantly seek
out and learn about new fields and new technologies. While Elixir may not
be the ideal language for solving computationally expensive problems, a pro-
grammer shouldn’t be forced to learn a new language just to learn about
genetic algorithms.

In this book, you’ll learn everything you need to know to start working with
genetic algorithms. As you work through the book, you’ll build a framework
for problems using genetic algorithms. By the end, you’ll have a full-featured,
customizable framework complete with statistics, genealogy tracking, and
more, and you’ll have learned everything you need to solve practical problems
with genetic algorithms. You’ll do all of this using Elixir. Along the way, you’ll
learn some Elixir-specific tips and tricks to idiomatically encode problems
and solutions, speed up your code, and verify the correctness of the algorithms
you implement.

I hope this book forces you to think outside the box and inspires you to further
explore the beauty of genetic algorithms.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

Who This Book Is For
This book is for programmers with some experience or familiarity working
with Elixir, who are looking to expand their knowledge into the field of
genetic algorithms. While not traditionally thought of as a language suited
for computationally expensive problems, Elixir’s simple syntax and functional
style make for the creation of idiomatic solutions to optimization problems
with genetic algorithms. These solutions gently introduce the user to genetic
algorithms and optimization problems without the overhead of learning a
completely new programming language.

If you have no experience with Elixir, you might find this book difficult to
follow at times. Before getting started, I recommend checking out Elixir School1

or the Elixir Guides2 to get some familiarity with the language.

What’s in This Book
In Chapter 1, Writing Your First Genetic Algorithm, on page ?, you’ll learn
the basics of the genetic algorithm by solving an introductory optimization
problem. You’ll learn about the core concepts of a genetic algorithm by writing
an Elixir script. By the end of the chapter, you’ll get to see a genetic algorithm
in action, and you’ll begin to understand the kinds of problems best suited
for using genetic algorithms.

In Chapter 2, Breaking Down Genetic Algorithms, on page ?, you’ll dive
deeper into the core concepts you learned about in the first chapter and you’ll
use some of Elixir’s code constructs to turn the script you wrote in Chapter
1, Writing Your First Genetic Algorithm, on page ?, into a reusable framework
for solving optimization problems. You’ll learn more about each step in the
evolutionary process of a genetic algorithm and, by the end of the chapter,
have a barebones framework for using genetic algorithms.

In Chapter 3, Encoding Problems and Solutions, on page ?, you’ll learn
about how to use Elixir to represent optimization problems and solutions to
optimization problems. You’ll learn about how genetic algorithms represent
solutions and how you can use a variety of strategies to represent real-world
solutions using code. Finally, you’ll create a program that learns how to spell
in order to see how you can use Elixir behaviours to represent any optimization
problem imaginable.

1. https://elixirschool.com/en/
2. https://elixir-lang.org/getting-started/introduction.html

Preface • vi

• Click HERE to purchase this book now. discuss

https://elixirschool.com/en/
https://elixir-lang.org/getting-started/introduction.html
http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

In Chapter 4, Evaluating Solutions and Populations, on page ?, you’ll explore
how genetic algorithms learn to find better and better solutions by evaluating
a set of solutions. You’ll learn more about the concept of fitness. You’ll also
learn about how to write different fitness functions and termination criteria
for different types of problems, including shipping optimization, portfolio
optimization, and website optimization.

In Chapter 5, Selecting the Best, on page ?, you’ll learn about the first
operator in a genetic algorithm—selection. You’ll learn about why selection
is important, how selection rate affects your algorithms, and how to write
different types of selection strategies. You’ll learn about how different selection
strategies apply best to different types of problems, and you’ll learn how to
customize them within your genetic algorithms.

In Chapter 6, Generating New Solutions, on page ?, you’ll learn about how
genetic algorithms create new solutions from existing ones using crossover.
You will learn about different types of crossover strategies and how to imple-
ment them in Elixir. You’ll learn how to solve the N-queens problem to see
how crossover strategies can affect the solutions produced by your genetic
algorithm.

In Chapter 7, Preventing Premature Convergence, on page ?, you’ll learn
about a common problem in genetic algorithms—premature convergence—and
how to solve it using mutation. You’ll create a basic password cracker to
demonstrate premature convergence. You’ll learn how to implement several
different types of mutation strategies, and you’ll learn which ones apply best
to different problems.

In Chapter 9, Tracking Genetic Algorithms, on page ?, you’ll learn about the
different metrics and statistics you can track while running your genetic
algorithms. You’ll learn how to implement an evolutionary simulation using
genetic algorithms, and you’ll build statistics and genealogy tracking mecha-
nisms around that problem.

In Chapter 10, Visualizing the Results, on page ?, you’ll use the statistics
collected in Chapter 9, Tracking Genetic Algorithms, on page ?, to create
visualizations using different plotting tools. Next, you’ll create a genetic
algorithm that learns how to play Tetris, and you’ll learn how to use different
tools to watch your algorithm in action.

In Chapter 11, Optimizing Your Algorithms, on page ?, you’ll work through
a general optimization process to learn how to get the most performance out
of your code. You’ll learn how to use Elixir tools to benchmark and profile
your algorithms. You’ll learn how to write faster Elixir and faster algorithms.

• Click HERE to purchase this book now. discuss

What’s in This Book • vii

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

You’ll learn how to parallelize your algorithms and how to implement NIFs
that run faster than pure Elixir code.

In Chapter 12, Writing Tests and Code Quality, on page ?, you’ll learn how
to use Elixir features and packages to test and type check your code. You’ll
learn a bit about writing tests that work well with randomness. You’ll then
learn how to write typespecs and how to verify your typespecs are correct.

In Chapter 13, Moving Forward, on page ?, you’ll be introduced to a variety
of practical applications of genetic algorithms. From artificial intelligence to
finance to advertising, you’ll learn how genetic algorithms are applied in
practice, and you’ll learn about how you can use them in almost any field.

How to Use This Book
Each chapter in this book builds on the last by making additions to a genetic
algorithm framework in some meaningful way. You should read this book in
successive order and follow along with the code examples as they are presented
to you. If, for some reason, you want to skip around, you can download the
code from each chapter on the book’s web page.

How Does Elixir Fit In?
Before you start reading this book, you’re likely wondering two things:

• Why would I do this in Elixir?
• How does Elixir fit in the bigger picture of genetic algorithm design?

Elixir is certainly not a popular choice for genetic algorithm design; however,
that doesn’t mean it’s not a good choice.

First, the significant increases in available computing power over the last
decade have meant the need for incredibly efficient code has diminished.
That’s not to say you shouldn’t pay attention to efficiency and writing efficient
code; however, the need to optimize code for low-power hardware has signifi-
cantly decreased.

Second, as you’ll see in Chapter 11, Optimizing Your Algorithms, on page ?,
parallelism in Elixir is a straightforward task. The BEAM is especially opti-
mized for running numerous processes at once, so writing and running par-
allel code is easy. Genetic algorithms are by nature very parallel. A portion
of research3 into genetic algorithms takes advantage of the parallelism offered
by Erlang to experiment with parallel genetic algorithms.

3. http://personal.denison.edu/~lalla/MCURCSM2011/6.pdf

Preface • viii

• Click HERE to purchase this book now. discuss

http://personal.denison.edu/~lalla/MCURCSM2011/6.pdf
http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

Finally, Elixir’s syntax and design patterns lend themselves nicely to writing
idiomatic genetic algorithms. As you’ll see throughout this book, Elixir offers
a number of useful features for creating a general framework for genetic
algorithm design. This is not only excellent for learning but also for rapid
prototyping of new ideas.

You might not choose to implement a production-level genetic algorithm in
Elixir, but using Elixir to prototype and experiment can save you significant
amounts of time and effort.

Now, it’s time to get started writing your first genetic algorithm.

• Click HERE to purchase this book now. discuss

How Does Elixir Fit In? • ix

http://pragprog.com/titles/smgaelixir
http://forums.pragprog.com/forums/smgaelixir

