
Extracted from:

The Cucumber for Java Book
Behaviour-Driven Development

for Testers and Developers

This PDF file contains pages extracted from The Cucumber for Java Book, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Cucumber for Java Book
Behaviour-Driven Development

for Testers and Developers

Seb Rose
Matt Wynne

Aslak Hellesøy

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-29-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 11

Simplifying Design with
Dependency Injection

In Dependency Injection, on page ?, we saw how Cucumber uses dependency
injection (DI) to share an instance of KnowsTheDomain between our step defini-
tions, but we really only scratched the surface. Now it’s time to dig a little bit
deeper.

In this chapter we’ll discuss how DI can help improve the design of your test
code and the various DI containers that are integrated with Cucumber. Then
we’ll dive in and refactor our ATM example to use DI more effectively, showing
you how to do it with four of the popular DI containers.

DI and Cucumber
You don’t need to use a DI container when you use Cucumber. When you
use Cucumber without one of the DI integrations, it manages the creation of
all your hooks and step definitions itself. Cucumber creates fresh instances
of each step definition or hook class for each scenario. Of course that means
that these classes need to have a default constructor; otherwise Cucumber
won’t know how to create them. This makes it hard to share state safely
between several step definition classes.

DI can make some of your everyday work less tedious and error prone. As
soon as you add one of the DI integrations, the DI container takes over the
responsibility for creating the hooks and step definitions. All the DI containers
can also inject objects into our hooks and step definitions when it creates
them. Even better, the DI container will create instances of any object that
needs to be created so you can easily build networks of dependent objects,
leaving the hard work of wiring them all together to the DI container.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

The two common ways that DI containers inject objects are constructor injection
and field injection. In the following sections, we’ll mainly be using constructor
injection, but we’ll also show you field injection in action.

Letting DI Manage Shared State
A DI container is just a tool that creates and manages instances of some
classes for us. If you look back at the code we wrote to share a single instance
of KnowsTheDomain among all our step definition classes, you’ll see that we
never create an instance of KnowsTheDomain using new. That’s because our DI
container, PicoContainer, has been doing it for us. What’s more, PicoContainer
created a new instance of KnowsTheDomain for each scenario and injected that
instance into every step definition class that needed it. This made it easy for
us to create a focused step definition class for each domain entity in our
application, relying on PicoContainer to share state between them.

If we had done this without DI, it would have meant much more work for us.
We could have shared state by creating a static instance of KnowsTheDomain, but
that instance would then be shared by all our scenarios. Since we want each
scenario to have its own fresh copy of KnowsTheDomain, we would have to add
a @Before hook to reset the shared instance. But we don’t need to do any of
this, because a DI container will do it for us.

Cucumber’s use of DI makes our lives much simpler by taking care of the
creation of our hook and step definition classes, as well as all the shared state
that they depend on. For each step definition that needs access to a scenario’s
shared state, we define a constructor that takes the shared class as a
parameter. If a scenario needs access to instances of several different classes,
we simply provide a constructor that has a parameter for each of them:

public SomeStepDefinitionOrHooks(Foo sharedFoo, Bar sharedBar) {
// Store sharedFoo and sharedBar for later use

}

You’ll want to use DI in most of your Cucumber projects, because it makes
sharing state between step definition classes so much simpler. Cucumber
has integrations with several DI containers, which we’ll take a brief look at
next.

DI Container Integrations
Cucumber ships with integrations to several of the more popular DI containers
(as well as some unfamiliar to most people), shown in the following list. The
code you write will look slightly different depending on which DI container
you choose.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

• cucumber-picocontainer—PicoContainer:1 A lightweight DI container from Aslak
Hellesøy, Paul Hammant, and Jon Tirsen

• cucumber-guice—Guice:2 A lightweight DI container from Google

• cucumber-spring—Spring:3 A popular framework that includes DI and much
more

• cucumber-weld—CDI/Weld:4 The reference implementation of the CDI (Context
and Dependency Injection Framework for the Java EE platform)

• cucumber-openejb—OpenEJB:5 A stand-alone EJB server from Apache,
including a CDI implementation

You choose which framework to use by including the relevant Cucumber JAR
in your classpath, but only one Cucumber DI JAR should ever be on the
classpath. As soon as you put one of these JARs on your classpath, Cucumber
will delegate the creation and management of your hooks and step definitions
to the DI container you chose. The Cucumber JARs contain only the code to
integrate the DI container—you’ll also need to add a dependency on the DI
container itself.

Which DI Container Should I Choose?

The various DI containers provide almost exactly the same functionality. Each
needs slightly different configuration, but the choice mostly depends on what
DI container you’re already using in your application. If your application uses
Spring, then choose cucumber-spring. If your application uses Guice, then choose
cucumber-guice.

If your app isn’t using DI at all, PicoContainer is a great choice because it’s
so simple to use.

Let’s to go back to our ATM example and see how DI can improve the structure
of our test code. You’ll be surprised what a big difference it can make.

Improving Our Design Using DI
As we’ve seen, DI can make our lives simpler by doing some of our work for
us. At the moment our application is using DI to share some state, but code
in KnowsTheDomain is managing the creation of quite a few domain entities. As

1. http://picocontainer.codehaus.org
2. https://github.com/google/guice
3. http://projects.spring.io/spring-framework/
4. http://weld.cdi-spec.org
5. http://openejb.apache.org/index.html

• Click HERE to purchase this book now. discuss

Improving Our Design Using DI • 7

http://picocontainer.codehaus.org
https://github.com/google/guice
http://projects.spring.io/spring-framework/
http://weld.cdi-spec.org
http://openejb.apache.org/index.html
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

our application grows, we’re likely to find more domain entities that need to
be shared between our step definitions. The temptation would be to put all
our shared domain entities into KnowsTheDomain, but this would soon grow
huge, exhibiting the Monster Object antipattern.6

To keep our step definitions maintainable, it’s a good idea to create a step
definition class for each domain entity. It’s clear that the Cash Slot step defi-
nition is going to need to interact with the Cash Slot domain entity, but will
it ever need to know about a Customer entity? Probably not, so why would
we pass it a helper that has access to the Customer?

Starting with the code from the end of Chapter 10, Databases, on page ?,
we’re going to refactor our ATM example to use DI more effectively. We’ll take
small steps,7 looking at the result of each refactoring to see if there is another
refactoring that could improve the design further. At the end you’ll see a much
cleaner application with fewer classes and a clearer architecture.

Decomposing KnowsTheDomain
We’ll start by splitting KnowsTheDomain into several, smaller, cohesive helper
classes—one for each domain entity—as as shown in the figure. Then we can
make sure that a step definition only has access to entities that it should
need to interact with by passing them in at construction time.

KnowsTheDomain

Account getMyAccount()
Teller getTeller()
CashSlot getCashSlot()

CashSlotSteps

public void CashSlotSteps(KnowsTheDomain helper) {
 // ...
}

KnowsTheAccount

Account getMyAccount()

CashSlotSteps

public void CashSlotSteps(KnowsTheCashSlot helper) {
 // ...
}KnowsTheTeller

Teller getTeller()

KnowsTheCashSlot

CashSlot getCashSlot()

Be
fo
re

Af
te
r

6. http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/
7. http://c2.com/cgi/wiki?RefactoringInVerySmallSteps

• 8

• Click HERE to purchase this book now. discuss

http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/
http://c2.com/cgi/wiki?RefactoringInVerySmallSteps
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

We’ll move the functionality that’s specific to each domain entity into a sepa-
rate helper class. Take a look at KnowsTheCashSlot, for example:

dependency_injection/pico/02/src/test/java/support/KnowsTheCashSlot.java
package support;
import nicebank.CashSlot;

public class KnowsTheCashSlot {
private CashSlot cashSlot;

public CashSlot getCashSlot() {
if (cashSlot == null){

cashSlot = new CashSlot();
}
return cashSlot;

}
}

Similarly, we can create the KnowsTheTeller and KnowsTheAccount helper classes.

Next we have to change references to KnowsTheDomain, such as in CashSlotSteps:

dependency_injection/pico/02/src/test/java/nicebank/CashSlotSteps.java
import support.KnowsTheCashSlot;

public class CashSlotSteps {
KnowsTheCashSlot cashSlotHelper;

public CashSlotSteps(KnowsTheCashSlot cashSlotHelper) {
this.cashSlotHelper = cashSlotHelper;

}
}

Not all changes are quite so simple. Our TellerSteps, for example, interacts with
KnowsTheAccount as well as KnowsTheTeller, so we have to pass both in to the con-
structor. The DI framework can handle multiple parameters, and calls the
constructor correctly without any extra work on our part:

dependency_injection/pico/02/src/test/java/nicebank/TellerSteps.java
public TellerSteps(KnowsTheTeller tellerHelper, KnowsTheAccount accountHelper) {

this.tellerHelper = tellerHelper;
this.accountHelper = accountHelper;

}

Once we finish moving functionality into the new helper classes, we notice
that there’s still some code in KnowsTheDomain that’s concerned with creating
a shared EventFiringWebDriver. Since this is specific to the technology driving the
user interface, it’s not logically a concern of any of the KnowsTheXxx classes, so
we need to decide where to put it, which we’ll do next.

• Click HERE to purchase this book now. discuss

Improving Our Design Using DI • 9

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/KnowsTheCashSlot.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/nicebank/TellerSteps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Extracting a Web Driver
Both AtmUserInterface and WebDriverHooks are dependent on a shared EventFiringWeb-
Driver. This used to be managed by KnowsTheDomain but really has nothing to do
with the domain. Instead, let’s extract a new MyWebDriver class:

dependency_injection/pico/02/src/test/java/support/MyWebDriver.java
package support;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.events.EventFiringWebDriver;

public class MyWebDriver extends EventFiringWebDriver{
public MyWebDriver() {

super(new FirefoxDriver());
}

}

There’s no code left in KnowsTheDomain, so we can delete it. However, we still
have to inject the shared MyWebDriver instance into AtmUserInterface and WebDriver-
Hooks by changing their constructors:

dependency_injection/pico/02/src/test/java/support/AtmUserInterface.java
private final EventFiringWebDriver webDriver;

public AtmUserInterface(MyWebDriver webDriver) {
this.webDriver = webDriver;

}

(The WebDriverHooks constructor looks the same.)

Now we run mvn clean test to make sure we haven’t introduced any defects.

We’ve improved our design by decoupling the UI from the domain entities.
Our DI container now has the responsibility of managing a shared instance
of MyWebDriver and injecting it into any constructor that needs it. In the next
step, we’ll see that most of the helper classes are doing nothing (or very little)
that our DI container can’t do for us, so we’ll refactor them away entirely.

Replacing the Helper Classes
At this point, we’ve created smaller, more cohesive helper classes, so now
let’s take a good look at each of them to see if we’re happy with the structure
of our test code. Now that we have smaller helper classes it’s easier to see
exactly what each one does and decide, armed with our deeper understanding
of DI, if we could do it better. And if we think that we could improve things
further, we still have the safety net of a passing scenario to ensure that we
don’t break anything while we continue the refactoring.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/02/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

KnowsTheCashSlot
Taking a look at the class KnowsTheCashSlot, we can see that all it’s doing is
managing the creation of the domain entity CashSlot. The reason we’re using
DI in the first place is to manage the creation of shared objects, so it seems
strange that we’ve ended up with our own class that does just that! What has
happened is that by refactoring KnowsTheDomain, and with our new knowledge
of how DI works, we can now see that we don’t need KnowsTheCashSlot at all. So,
let’s simplify our codebase by deleting KnowsTheCashSlot and injecting the CashSlot
directly into our step definition:

dependency_injection/pico/03/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;

public CashSlotSteps(CashSlot cashSlot) {
this.cashSlot = cashSlot;

}

We also need to inject CashSlot into our ServerHooks:

dependency_injection/pico/03/src/test/java/hooks/ServerHooks.java
private KnowsTheAccount accountHelper;
private CashSlot cashSlot;

public ServerHooks(KnowsTheAccount accountHelper, CashSlot cashSlot) {
this.accountHelper = accountHelper;
this.cashSlot = cashSlot;

}

Run mvn clean test to make sure we’re still green!

KnowsTheTeller
KnowsTheTeller also only manages the creation of a Teller. If we make exactly the
same changes to delete the class, we’ll get a runtime error when trying to
create TellerSteps. That’s because the DI container doesn’t know which imple-
mentation of the Teller interface to instantiate. We tell it which concrete class
to instantiate by changing the signature of the TellerSteps constructor:

dependency_injection/pico/04/src/test/java/nicebank/TellerSteps.java
KnowsTheAccount accountHelper;
Teller teller;

public TellerSteps(AtmUserInterface teller, KnowsTheAccount accountHelper) {
this.teller = teller;
this.accountHelper = accountHelper;

}

Run mvn clean test again.

• Click HERE to purchase this book now. discuss

Improving Our Design Using DI • 11

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/03/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/03/src/test/java/hooks/ServerHooks.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/04/src/test/java/nicebank/TellerSteps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

KnowsTheAccount
Removing KnowsTheAccount is more complicated, because (as is now clear) it has
several responsibilities. It does the following:

• Opens a database connection (if necessary)
• Deletes any existing accounts
• Creates an account with a specified account number

Let’s start by moving the database connection and account deletion into
ResetHooks. We need to ensure that this runs before any other hook that needs
a database connection, so we specify a low order number:

dependency_injection/pico/05/src/test/java/hooks/ResetHooks.java
public class ResetHooks {

@Before(order = 1)
public void reset() {

if (!Base.hasConnection()) {
Base.open(

"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost/bank",
"teller", "password");

}
Account.deleteAll();
TransactionQueue.clear();

}
}

Now KnowsTheAccount’s only responsibility is to store a test account in the
database, so the name no longer makes sense. Rename it TestAccount and have
it extend Account:

dependency_injection/pico/05/src/test/java/support/TestAccount.java
package support;
import nicebank.Account;

public class TestAccount extends Account {
public TestAccount() {

super(1234);
saveIt();

}
}

Now when we inject a TestAccount directly into our steps, PicoContainer will
ensure that they all get a reference to the same, newly created Account object.
Try it—it still works fine.

We could have done everything in this section without using DI at all, but
you can see how things are made so much simpler when the DI container

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/05/src/test/java/hooks/ResetHooks.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/05/src/test/java/support/TestAccount.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

takes care of managing the creation of our shared entities for us. It’s a bit
like the way garbage collection in the JVM frees us from having to worry too
much about creating and deleting object instances.

So far we’ve been using PicoContainer as our DI container. Next, let’s take a
look at how we’ve integrated it with our application.

PicoContainer Is Almost Invisible
PicoContainer is probably the simplest DI container on the JVM, which is
why we’ve been using it. It’s certainly the simplest to integrate with Cucumber.
Some of the other containers have more options, but PicoContainer is sufficient
for most applications. The most likely reason to not use PicoContainer is that
your application is already using another DI container.

Our use of PicoContainer is so unobtrusive that you may well have forgotten
all about it by now. The only evidence that we’re even using it at all are two
dependencies in our pom.xml:

dependency_injection/pico/01/pom.xml
<dependency>

<groupId>info.cukes</groupId>
<artifactId>cucumber-picocontainer</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>

This dependency puts the cucumber-picocontainer JAR on the classpath, which tells
Cucumber to let PicoContainer handle creation of the hooks and step defini-
tions.

dependency_injection/pico/01/pom.xml
<dependency>

<groupId>org.picocontainer</groupId>
<artifactId>picocontainer</artifactId>
<version>${picocontainer.version}</version>
<scope>test</scope>

</dependency>

This second dependency puts the PicoContainer implementation JAR on the
classpath. Without this Cucumber would be unable to find PicoContainer
and wouldn’t be able to delegate to it.

Apart from adding these dependencies, you can use PicoContainer without
adding any code or annotations at all. In the following sections we’ll port the
example to other DI containers, and we’ll see that PicoContainer is the only
one that requires so little configuration by us.

• Click HERE to purchase this book now. discuss

PicoContainer Is Almost Invisible • 13

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/01/pom.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/pico/01/pom.xml
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Moving to Guice
Guice is a DI container from Google with many of the same features as Pico-
Container. In our opinion it’s not as easy to use as PicoContainer, but it does
have some extra possibilities, as we’ll see. Also, since it’s part of the popular
Google toolset, you may already be familiar with it.

We’ll quickly modify our existing ATM solution to run with Guice, pointing
out the differences as we go. Further details can be found on the Guice web-
site.8 Note that as of this writing Guice 4.0 is in beta, but this example uses
Guice 3.0 and cucumber-guice-1.2.0.

Switching the DI Container
We’ll start with the refactored code that we produced at the end of the previous
section. The first thing to do is replace the dependencies on cucumber-picocontainer
and PicoContainer in pom.xml:

dependency_injection/guice/01/pom.xml
<dependency>

<groupId>info.cukes</groupId>
<artifactId>cucumber-guice</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>com.google.inject</groupId>
<artifactId>guice</artifactId>
<version>3.0</version>

</dependency>

If you run mvn clean test now you’ll see a number of errors like this:

T E S T S

Running RunCukesTest
Feature: Cash Withdrawal
Failure in before hook:ServerHooks.startServer()
Message: com.google.inject.ConfigurationException: Guice configuration errors:

1) Could not find a suitable constructor in hooks.ServerHooks.
Classes must have either one (and only one) constructor annotated with
@Inject or a zero-argument constructor that is not private.

at hooks.ServerHooks.class(ServerHooks.java:19)
while locating hooks.ServerHooks

8. https://github.com/google/guice

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/01/pom.xml
https://github.com/google/guice
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

What this is telling us is that Guice is trying to instantiate an instance of one
of our glue classes, but it doesn’t know which constructor to use (even though
they each have only one constructor).

@Inject Annotation
To tell Guice which constructor to use, we add the @Inject annotation to the
constructor that we want to inject objects into:

dependency_injection/guice/02/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;
@Inject➤

public CashSlotSteps(CashSlot cashSlot) {
this.cashSlot = cashSlot;

}

We also have to annotate the constructors in AtmUserInterface, AccountSteps,
ServerHooks, TellerSteps, and WebDriverHooks. When we run mvn clean test both of our
scenarios fail but with a different error:

T E S T S

Running RunCukesTest
Feature: Cash Withdrawal
Listening on http://10.101.1.77:8887/
Failure in after hook:ServerHooks.stopServer()
Message: com.google.inject.ProvisionException: Guice provision errors:

1) Error injecting constructor, org.javalite.activejdbc.DBException:
com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException:
Duplicate entry ’1234’ for key ’number’, Query:
INSERT INTO accounts (number, balance) VALUES (?, ?), params: 1234,0.00

at support.TestAccount.<init>(TestAccount.java:8)
while locating support.TestAccount

for parameter 0 at hooks.ServerHooks.<init>(ServerHooks.java:22)
while locating hooks.ServerHooks

What’s going on here? The error being reported is a MySQLIntegrityConstraintViola-
tionException, which is being thrown because we’re trying to create more than
one account with the same account number. The unique constraint we put on
the database won’t allow this and that’s the cause of the error.

The root cause of this problem is scope. We’ve hit a significant difference
between PicoContainer and Guice, which we’ll look at next.

• Click HERE to purchase this book now. discuss

Moving to Guice • 15

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/02/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

@ScenarioScoped Annotation
The Cucumber-Guice documentation says:

It is not recommended to leave your step definition classes with no scope as it
means that Cucumber will instantiate a new instance of the class for each step
within a scenario that uses that step definition.9

We have two potential scopes to choose from: @ScenarioScoped and @Singleton.
In general we will use @ScenarioScoped, because this ensures that state is reset
before each scenario starts to run.

Let’s annotate our step definitions and hooks to indicate that we want to
create them fresh for each scenario. The classes that need to be annotated
are AccountSteps, CashSlotSteps, TellerSteps, BackgroundProcessHooks, ResetHooks, ServerHooks,
and WebDriverHooks:

dependency_injection/guice/03/src/test/java/nicebank/AccountSteps.java
import cucumber.runtime.java.guice.ScenarioScoped;

@ScenarioScoped
public class AccountSteps {
}

When we run mvn clean test we get:

T E S T S

Running RunCukesTest
Feature: Cash Withdrawal
Listening on http://10.101.1.77:8887/
Server shutdown

Scenario: Successful withdrawal from an account in credit
Given my account has been credited with 1m$100.00
com.google.inject.ProvisionException: Guice provision errors:

1) Error injecting constructor, org.javalite.activejdbc.DBException:
com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException:
Duplicate entry ’1234’ for key ’number’, Query:
INSERT INTO accounts (number, balance) VALUES (?, ?), params: 1234,0.00

at support.TestAccount.<init>(TestAccount.java:8)
while locating support.TestAccount
for parameter 0 at nicebank.AccountSteps.<init>(AccountSteps.java:24)

at nicebank.AccountSteps.class(AccountSteps.java:24)
while locating nicebank.AccountSteps

9. http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/guice/package-summary.html

• 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/03/src/test/java/nicebank/AccountSteps.java
http://cukes.info/api/cucumber/jvm/javadoc/cucumber/api/guice/package-summary.html
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

We’ve fixed the failure in shutdownServer, but we’re still trying to create a
duplicate account. That’s because, although we’ve annotated the glue code
with @ScenarioScoped, Guice is still creating a new instance of every injected
class each time it needs to be injected. Since we are using injection to share
the same instance between several objects, we need to annotate these classes
as well. The classes that need to be annotated are AtmUserInterface, CashSlot,
MyWebDriver, and TestAccount.

The only class that presents a problem is CashSlot, because it is part of our
production code, and we may not want to add an annotation just to keep our
test framework happy. One alternative is to create a TestCashSlot that extends
CashSlot, which keeps Guice annotations confined to our test code:

dependency_injection/guice/04/src/test/java/support/TestCashSlot.java
package support;

import cucumber.runtime.java.guice.ScenarioScoped;

import nicebank.CashSlot;

@ScenarioScoped
public class TestCashSlot extends CashSlot {
}

However, now we need to tell Guice to create an instance of TestCashSlot, not
CashSlot. We can do this by changing the signatures of the @Inject-annotated
constructors that currently take a CashSlot:

dependency_injection/guice/04/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;

@Inject
public CashSlotSteps(TestCashSlot cashSlot) {

this.cashSlot = cashSlot;
}

Now the test passes!

@Singleton Annotation
In the previous section we applied the @ScenarioScoped annotation indiscrimi-
nately to every class that is being managed by Guice. This means that a new
instance will be created for every scenario run. That’s not a problem for us
at the moment because we have only one scenario, but this approach can be
wasteful, especially if the objects are expensive to construct.

The other supported scope, @Singleton, tells Cucumber to construct only a
single instance for all scenarios that will be run. This strategy should be used

• Click HERE to purchase this book now. discuss

Moving to Guice • 17

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/04/src/test/java/support/TestCashSlot.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/04/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

only when you’re sure that the object stores no state that could allow one
scenario to affect the outcome of another scenario. In our case we could apply
this to our web driver, MyWebDriver:

dependency_injection/guice/05/src/test/java/support/MyWebDriver.java
import javax.inject.Singleton;

@Singleton
public class MyWebDriver extends EventFiringWebDriver{

public MyWebDriver() {
super(new FirefoxDriver());

}
}

The test continues to pass, and now when we add more features they’ll share
the same browser instance.

There are lots more clever things that you can do with Guice, so take a look
at the documentation online.

Spring in Your Steps
Spring is a popular and (very) large framework. Cucumber ships with an
integration to Spring for handling step creation and DI, which doesn’t require
the whole Spring framework on the classpath. The current version of cucumber-
spring is built against Spring 4 and is still under active development, so check
the release notes online to see the changes in future releases of cucumber-spring.

Switching the DI Container
We’ll start with the code as it was at the end of PicoContainer Is Almost
Invisible, on page 13. As before, we’ll change pom.xml to bring in the minimum
dependency on Spring, our chosen DI framework:

dependency_injection/spring/01/pom.xml
<dependency>

<groupId>info.cukes</groupId>
<artifactId>cucumber-spring</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring.version}</version>

</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>

• 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/guice/05/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/pom.xml
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

<version>${spring.version}</version>
<scope>test</scope>

</dependency>

We’ll also add a configuration file, cucumber.xml, as a test resource:

dependency_injection/spring/01/src/test/resources/cucumber.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>
<context:component-scan base-package="hooks, nicebank, support" />➤

</beans>

Here, we’re telling Spring which of the base packages to scan for the classes
that we’re going to inject using the context:component-scan element. For this
example we’re interested in the hooks, nicebank, and support packages.

Some Spring Annotations
Spring uses the annotation @Autowired to identify what should be injected,
rather than the @Inject annotation that other DI containers use. Unfortunately,
the current cucumber-spring integration only supports no-argument constructors
for step definition and hook classes. That means we’ll have to use field injection
instead of the constructor injection that we used in PicoContainer and Guice.
Instead of having an annotated constructor that stores the injected objects
that are passed to it, the DI container will inject the object directly into the
annotated fields:

dependency_injection/spring/01/src/test/java/nicebank/CashSlotSteps.java
@Autowired
TestCashSlot cashSlot;

Now we just need to tell Spring which of our classes are candidates for
injection by marking them with @Component and associating them with the
correct scope. The cucumber-spring integration automatically associates all hooks
and step definitions with a scope called cucumber-glue, but we’ll need to associate
any objects that we’ve created to share state with that scope too:

dependency_injection/spring/01/src/test/java/support/AtmUserInterface.java
@Component
@Scope("cucumber-glue")
public class AtmUserInterface implements Teller {
}

• Click HERE to purchase this book now. discuss

Spring in Your Steps • 19

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/java/nicebank/CashSlotSteps.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/01/src/test/java/support/AtmUserInterface.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Now that we’ve done that, all our support classes are identified as beans, and
Spring will happily instantiate and inject them on demand.

Run mvn clean test to check it’s all working.

Some Spring Configuration Magic
The Spring configuration file is very powerful. In this section we’ll see how
we can use the configuration file to specify that a class is a bean without
having to modify the Java code at all.

Beans with No-arg Constructors

Spring provides an alternative way to specify which classes are candidates
for injection by configuring them as beans in the configuration file, in our
case cucumber.xml. Since we’re not saying anything about constructor arguments,
these classes need to have a default (or no-arg) constructor:

dependency_injection/spring/02/src/test/resources/cucumber.xml
<bean class="support.AtmUserInterface" scope="cucumber-glue" />
<bean class="support.MyWebDriver" scope="cucumber-glue" />
<bean class="nicebank.CashSlot" scope="cucumber-glue" />

Now we can remove the annotations from AtmUserInterface and MyWebDriver, and
delete TestCashSlot entirely (because we only created it to avoid having to edit
the production code). We need to do a bit more to remove TestAccount, though,
because we have to pass an account number to its constructor. One solution
is to create AccountFactory and configure Spring to use that:

dependency_injection/spring/02/src/test/resources/cucumber.xml
<bean class="support.AccountFactory" factory-method="createTestAccount"

lazy-init="true" scope="cucumber-glue" />

dependency_injection/spring/02/src/test/java/support/AccountFactory.java
package support;

import nicebank.Account;

public class AccountFactory {

public static Account createTestAccount() {
Account account = new Account(1234);
account.saveIt();
return account;

}
}

Run mvn clean test and the scenario passes as before.

• 20

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/java/support/AccountFactory.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Bean Constructors with Arguments

In the previous section we saw how we could configure a class as a bean in
the cucumber.xml file. That was fine for classes that had default, no-arg construc-
tors. When we needed to call a constructor with an argument for Account we
had to create an AccountFactory. Let’s see if there’s another way to do it. Take a
look at MyWebDriver:

dependency_injection/spring/02/src/test/java/support/MyWebDriver.java
package support;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.events.EventFiringWebDriver;

public class MyWebDriver extends EventFiringWebDriver{
public MyWebDriver() {

super(new FirefoxDriver());
}

}

As you can see, its only difference from Selenium’s EventFiringWebDriver is that
the constructor is wired to use a Firefox browser. As a last example, let’s use
Spring to allow us to get rid of MyWebDriver entirely. We’ll start by telling Spring
how to create an EventFiringWebDriver for our scenarios to use:

dependency_injection/spring/03/src/test/resources/cucumber.xml
<bean class="org.openqa.selenium.support.events.EventFiringWebDriver"

scope="cucumber-glue" destroy-method="close">
<constructor-arg>

<bean class="org.openqa.selenium.firefox.FirefoxDriver"
scope="cucumber-glue"/>

</constructor-arg>
</bean>

Now we need to replace all references to MyWebDriver in our test code with ref-
erences to EventFiringWebDriver. Here’s an example from WebDriverHooks:

dependency_injection/spring/03/src/test/java/hooks/WebDriverHooks.java
@Autowired
private EventFiringWebDriver webDriver;

Another run of mvn clean test will verify that our scenario still passes.

We’ll see more uses of Spring in Chapter 12, Working with Web Applications,
on page ?.

CDI with Weld
The Java community have been working on a standardized approach to many
of the challenges that software developers have to deal with. One of these is

• Click HERE to purchase this book now. discuss

CDI with Weld • 21

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/02/src/test/java/support/MyWebDriver.java
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/03/src/test/resources/cucumber.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/spring/03/src/test/java/hooks/WebDriverHooks.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

the Contexts and Dependency Injection for Java EE (CDI) standard, of which
there are several implementations. Weld and OpenEJB are the two implemen-
tations that Cucumber is integrated with, but since they are so similar we’ll
only show an example using Weld.

Again, we’ll start with the code as it was at the end of PicoContainer Is Almost
Invisible, on page 13. As before we change pom.xml to bring in the minimum
dependency on our chosen DI framework:

dependency_injection/weld/01/pom.xml
<dependency>

<groupId>info.cukes</groupId>
<artifactId>cucumber-weld</artifactId>
<version>${cucumber.version}</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>javax.enterprise</groupId>
<artifactId>cdi-api</artifactId>
<version>${cdi-api.version}</version>

</dependency>
<dependency>

<groupId>org.jboss.weld.se</groupId>
<artifactId>weld-se</artifactId>
<version>${weld.version}</version>

</dependency>

In the same way as we have seen with the preceding DI containers, we need
to tell Weld/CDI how and where to inject our objects. We show where we want
our objects injected using the @Inject annotation and we indicate that we want
to share a single instance of each object using the @Singleton annotation.
Examples of this can be seen in CashSlotSteps:

dependency_injection/weld/01/src/test/java/nicebank/CashSlotSteps.java
CashSlot cashSlot;
@Inject➤

public CashSlotSteps(TestCashSlot cashSlot) {
this.cashSlot = cashSlot;

}

Both of these annotations come from the javax.inject package, so this code is
identical to the Guice version. What is different, however, is that we now need
tell the container about the classes that need injected. Guice used the class-
path to find candidates for injection, but for Weld/CDI we need to create
bean.xml:

• 22

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/pom.xml
http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/src/test/java/nicebank/CashSlotSteps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

dependency_injection/weld/01/src/test/resources/META-INF/beans.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

</beans>

You’ll notice that our bean.xml has almost nothing in it. We could use it to
configure our beans in much the same way that we did in Some Spring Con-
figuration Magic, on page 20. Since this book is about Cucumber, not
Weld/CDI, we’re leaving that as an exercise for the reader.

What We Just Learned
Congratulations, you’re ready to inject dependencies!

In this chapter we’ve seen how Cucumber’s use of dependency injection
simplifies the management of the graph of objects needed to run our scenarios.
We looked at most of the DI containers that Cucumber is integrated with and
saw that PicoContainer is probably the simplest to use, if you aren’t already
using one of the others in your project. Most of the other DI containers require
some form of annotation and configuration. Once we choose a DI container,
no matter which one, it takes over responsibility for creating all our step
definition and hook objects.

As we applied DI to our example we pushed more of the responsibilities for
creating and initializing our objects onto the container. That left us with
fewer, smaller, more cohesive objects. This style takes a bit of getting used
to, but leads to a more composable architecture that can be easier to maintain
and extend.

Try This
Using your DI container of choice, try the following:

• If we had more than one scenario, the browser would start up for each
one, which takes time. How would you share a single browser session
across all scenarios?

• Most of our examples used constructor injection. Change them to use
field injection—you should then be able to delete the constructor entirely.

• Choose a DI container and browse its documentation. Experiment with
different ways of creating the objects that need to be injected.

• Click HERE to purchase this book now. discuss

What We Just Learned • 23

http://media.pragprog.com/titles/srjcuc/code/dependency_injection/weld/01/src/test/resources/META-INF/beans.xml
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

