
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Understand Your Complexity Debt
Technical debt is a concept that gets thrown around a lot, but I am not sure
everyone who uses it actually understands what it means—or what the costs
actually are. If that understanding was common knowledge, there wouldn’t
be so much debt around. Also, the concept only catches the technical aspects
of what slows us down.

This is why I’ve started to refer to it as Complexity Credits.

Complexity credits are small debts that we accumulate over time. None of
them are especially eye-catching on their own, but when zoomed out we see
a pattern of behavior where our complexity debt is increasing.

Acting on credit is a perfectly viable business decision. Sometimes we can’t
wait as we need to strike while the iron is hot. If we don’t have the financial
means at this very moment, we call the bank to get credit. However, we can’t
continuously act on credit. If we don’t have a viable repayment plan for those
credits, the bank will eventually say no.

The problem with technical or organizational credit, as opposed to monetary
credit, is that there is no bank. We are free to take as many credits as we
like. This will slowly build up cognitive load and system inertia—the interest
rate of those credits—that stops us from being efficient. Eventually this will
reduce the speed of the organization, and harm our ability to act under
pressure.

Be Aware of the Type of Debt
While technical debt is probably the most obvious form of complexity credit
in software, there are other things that cause us to accumulate complexi-
ty—both regarding our product or software and our organizational structure.

As our flow of work grows slower, there is a tendency to throw more people
at the problem. Coordinators, project managers, more developers. This further
deteriorates the system, because more people always means more complexity.
More brains to keep informed, more heads to keep aligned, more chefs that
stir the soup—more meetings. To remedy the confusion that usually follows,
we “increase clarity” by assigning ownership—essentially defining who gets
yelled at when expectations are not met.

With this “clear ownership”, people grow protective of their own interests and
their own responsibilities. So to get things done we need more negotia-
tions—more meetings.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/stresseq
http://forums.pragprog.com/forums/stresseq

If this continues for years and decades, the organization will grow so complex
that no one intuitively understands it. Official channels become so slow that
it’s impossible to get anything done. When this happens there is a tendency
for a “black market” of back channels to evolve.5

If this is not continuously addressed, knowing these back channels then
becomes the only realistic way of getting things done within a reasonable
timespan.

Have a Mindset for Reducing Complexity
Alfred North Whitehead was a philosopher and mathematician, perhaps best
remembered for writing Principia Mathematica together with Bertrand Russel.
In his book An Introduction to Mathematics [Nor11] he argues that civilizational
advancement is a matter of reducing complexity to preserve cognitive energy,6

expressing it as:

Civilization advances by extending the number of important operations which we
can perform without thinking about them. Operations of thought are like cavalry
charges in a battle—they are strictly limited in number, they require fresh horses,
and must only be made at decisive moments.

In other words, we don’t have endless cognitive energy. If we waste that
energy on things that could be made simpler, we reduce our ability to excel
on harder problems. How many companies have this type of policy when
deciding on tooling, product design, tech stack, or organizational structure?

My take on this quote is:

An organization advances by increasing the amount of finished work, without
increasing the workload.

With that in mind, what has your organization done in the past month to
make it easier for yourselves to deliver value to your customers? If the answer
is nothing, you really should consider how you can start working with contin-
uous improvement, otherwise you may soon find yourself in a very costly
complexity spiral.

Listen to the Alarm Bells
One good indicator of organizational cholesterol is how long it takes for new
employees to start delivering valuable work. How long does it take for them

5. https://www.heinz.cmu.edu/faculty-research/profiles/krackhardt-davidm/_files/krackhardt-hbr-spring2011.pdf
6. https://quod.lib.umich.edu/u/umhistmath/AAW5995.0001.001

• 4

• Click HERE to purchase this book now. discuss

https://www.heinz.cmu.edu/faculty-research/profiles/krackhardt-davidm/_files/krackhardt-hbr-spring2011.pdf
https://quod.lib.umich.edu/u/umhistmath/AAW5995.0001.001
http://pragprog.com/titles/stresseq
http://forums.pragprog.com/forums/stresseq

to understand the software architecture? How long does it take for them to
understand the organizational context they will be working in?

I have worked with companies that will say it takes at least ten to twelve
months for a new programmer to start delivering value. They almost say it
with pride, because they think they are so “advanced” that it takes an experi-
enced engineer almost a year to understand the system and the product.

That shouldn’t be a source of pride. That’s an alarm bell!

Every company should be very aware of when they are wasting their employees’
cognitive energy. That energy should be preserved for the big puzzles and the
real problems. Reducing cognitive load should be one of the main focus points
for continuous improvement.

• Click HERE to purchase this book now. discuss

Understand Your Complexity Debt • 5

http://pragprog.com/titles/stresseq
http://forums.pragprog.com/forums/stresseq

