
Extracted from:

Domain Modeling Made Functional
Tackle Software Complexity with

Domain-Driven Design and F#

This PDF file contains pages extracted from Domain Modeling Made Functional,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Domain Modeling Made Functional
Tackle Software Complexity with

Domain-Driven Design and F#

Scott Wlaschin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-254-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Functions Are Things
In the functional programming paradigm, functions are things in their own
right. And if functions are things, then they can be passed as input to other
functions:

Function

A function can be an input

Output

Or they can be returned as the output of a function:

A function can be an output

Input
Function

Or they can be passed as a parameter to a function to control its behavior:

Treating functions as things opens up a world of possibilities. It’s hard to get
your head around at first, but you can already see that even with this basic
principle you can build up complex systems quite quickly.

Jargon Alert: “Higher-Order Functions”

Functions that input or output other functions or take functions as parameters are
called higher-order functions, often abbreviated to HOFs.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Treating Functions as Things in F#
Let’s take a look at how “functions as things” works in F#. Here are four
function definitions:

let plus3 x = x + 3 // plus3 : x:int -> int
let times2 x = x * 2 // times2 : x:int -> int
let square = (fun x -> x * x) // square : x:int -> int
let addThree = plus3 // addThree : (int -> int)

The first two definitions are just like the ones we’ve seen before. In the third
definition, the let keyword is used to assign a name (square) to an anonymous
function, also known as a lambda expression. In the fourth definition, the let
keyword is used to assign a name (addThree) to a function defined earlier (plus3).
Each of these functions is an int -> int function that takes an int as input and
outputs a new int.

Now, because functions are things, we can put them in a list:

// listOfFunctions : (int -> int) list
let listOfFunctions =

[addThree; times2; square]

In F#, list literals use square brackets as delimiters, with semi-
colons (not commas!) as element separators.

We can now loop through the list and evaluate each function in turn:

for fn in listOfFunctions do
let result = fn 100 // call the function
printfn "If 100 is the input, the output is %i" result

// Result =>
// If 100 is the input, the output is 103
// If 100 is the input, the output is 200
// If 100 is the input, the output is 10000

The let keyword is not just for function definitions—it’s used generally to
assign names to values. So for example, here is let used to assign a name to
the string "hello":

// myString : string
let myString = "hello"

The fact that the same keyword (let) is used to define both functions and
simple values is not an accident. Let’s look at an example to see why. In this
first snippet, I define a function called square:

• Click HERE to purchase this book now. discuss

Functions Are Things • 7

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

// square : x:int -> int
let square x = x * x

And in this second snippet I’m assigning the name square to an anonymous
function. Is let defining a simple value here or a function?

// square : x:int -> int
let square = (fun x -> x * x)

The answer is both! A function is a thing and can be assigned a name. So the
second definition of square is essentially the same as the first, and they can
be used interchangeably.

Functions as Input
We said that “functions as things” means that they can be used for input and
output, so let’s see what that looks like in practice.

First, let’s look at using a function as an input parameter. Here’s a function
called evalWith5ThenAdd2, which takes a function fn, calls it with 5, and then
adds 2 to the result.

let evalWith5ThenAdd2 fn =
fn(5) + 2

// evalWith5ThenAdd2 : fn:(int -> int) -> int

If we look at the type signature at the bottom, we can see that the compiler
has inferred that fn must be an (int -> int) function.

Let’s test it now. First, we’ll define add1, which is an (int -> int) function, and
then pass it in.

let add1 x = x + 1 // an int -> int function
evalWith5ThenAdd2 add1 // fn(5) + 2 becomes add1(5) + 2
// // so output is 8

The result is 8, as we would expect.

We can use any (int -> int) function as a parameter. So let’s define a different
one, such as square and pass it as a parameter:

let square x = x * x // an int -> int function
evalWith5ThenAdd2 square // fn(5) + 2 becomes square(5) + 2
// // so output is 27

And this time the result is 27.

Functions as Output
Now let’s turn to functions as output. Why would you want to do that?

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Well, one very important reason to return functions is that you can “bake in”
certain parameters to the function.

For example, say you have three different functions to add integers, like this:

let add1 x = x + 1
let add2 x = x + 2
let add3 x = x + 3

Obviously, we would like to get rid of the duplication. How can we do that?

The answer is to create an “adder generator”—a function that returns an
“add” function with the number to add baked in:

Here’s what the code would look like:

let adderGenerator numberToAdd =
// return a lambda
fun x -> numberToAdd + x

// val adderGenerator :
// int -> (int -> int)

Looking at the type signature, it clearly shows us that it takes an int as input
and emits an (int -> int) function as output.

We could also implement adderGenerator by returning a named function instead
of an anonymous function, like this:

let adderGenerator numberToAdd =
// define a nested inner function
let innerFn x =

numberToAdd + x

// return the inner function
innerFn

As we’ve seen with the square example earlier, both implementations are
effectively the same. Which one do you prefer?

Finally, here’s how adderGenerator might be used in practice:

// test
let add1 = adderGenerator 1
add1 2 // result => 3

let add100 = adderGenerator 100
add100 2 // result => 102

Currying

Using this trick of returning functions, any multiparameter function can be
converted into a series of one-parameter functions. This method is called currying.

• Click HERE to purchase this book now. discuss

Functions Are Things • 9

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

For example, a two-parameter function such as add:

// int -> int -> int
let add x y = x + y

can be converted into a one-parameter function by returning a new function,
as we saw above:

// int -> (int -> int)
let adderGenerator x = fun y -> x + y

In F#, we don’t need to do this explicitly—every function is a curried function!
That is, any two-parameter function with signature 'a -> 'b -> 'c can also be
interpreted as a one-parameter function that takes an 'a and returns a function
('b -> 'c), and similarly for functions with more parameters.

Partial Application
If every function is curried, that means you can take any multiparameter
function and pass in just one argument, and you’ll get a new function back
with that parameter baked in but all the other parameters still needed.

For example, the sayGreeting function below has two parameters:

// sayGreeting: string -> string -> unit
let sayGreeting greeting name =

printfn "%s %s" greeting name

But we can pass in just one parameter to create some new functions with the
greeting baked in:

// sayHello: string -> unit
let sayHello = sayGreeting "Hello"

// sayGoodbye: string -> unit
let sayGoodbye = sayGreeting "Goodbye"

These functions now have one remaining parameter, the name. If we supply
that, we get the final output:

sayHello "Alex"
// output: "Hello Alex"

sayGoodbye "Alex"
// output: "Goodbye Alex"

This approach of “baking in” parameters is called partial application and is a
very important functional pattern. For example, we’ll see it being used to do
dependency injection in Implementation: Composing a Pipeline when we start
implementing the order-taking workflow.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

