
Extracted from:

Modern Perl, Fourth Edition

This PDF file contains pages extracted from Modern Perl, Fourth Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Modern Perl, Fourth Edition

chromatic

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-088-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2015

https://pragprog.com
rights@pragprog.com

Context
In spoken languages, the meaning of a word or phrase depends on how you
use it; the local context of other grammatical constructs helps clarify the
intent. For example, the inappropriate pluralization of “Please give me one
hamburgers!” sounds wrong (the pluralization of the noun differs from the
amount), just as the incorrect gender of “la gato” (the article is feminine, but
the noun is masculine) makes native speakers chuckle. Some words do double
duty; one sheep is a sheep just as two sheep are also sheep and you program
a program.

Perl uses context to express how to treat a piece of data. This governs the
amount of data as well as the kind of data. For example, several Perl operations
produce different behaviors when you expect zero, one, or many results. A
specific construct in Perl may do something different if you write “Do this,
but I don’t care about any results” compared to “Do this and give me multiple
results.” Other operations allow you to specify whether you expect to work
with numeric, textual, or true or false data.

You must keep context in mind when you read Perl code. Every expression
is part of a larger context. You may find yourself slapping your forehead after
a long debugging session when you discover that your assumptions about
context were incorrect. If instead you’re aware of context, your code will be
more correct—and cleaner, flexible, and more concise.

Void, Scalar, and List Context
Amount context governs how many items you expect an operation to produce.
Think of subject-verb number agreement in English. Even without knowing
the formal description of this principle, you probably understand the error
in the sentence “Perl are a fun language.” (In terms of amount context, you
could say that the verb are expects a plural noun or noun phrase.) In Perl,
the number of items you request influences how many you receive.

Suppose the function (Declaring Functions on page ?) called find_chores() sorts
your household todo list in order of priority. The number of chores you expect
to read from your list influences what the function produces. If you expect
nothing, you’re just pretending to be busy. If you expect one task, you have
something to do for the next fifteen minutes. If you have a burst of energy on
a free weekend, you could get all of your chores.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Why does context matter? A context-aware function can examine its calling
context and decide how much work it must do. When you call a function and
never use its return value, you’ve used void context:

find_chores();

Assigning the function’s return value to a single item (Scalars on page ?)
enforces scalar context:

my $single_result = find_chores();

Assigning the results of calling the function to an array (Arrays on page ?)
or a list, or using it in a list, evaluates the function in list context:

my @all_results = find_chores();
my ($single_element, @rest) = find_chores();

list of results passed to a function
process_list_of_results(find_chores());

The parentheses in the second line of the previous example group the two
variable declarations (Lexical Scope on page ?) into a single unit so that
assignment assigns to both of the variables. A single-item list is still a list,
though. You could also correctly write this:

my ($single_element) = find_chores();

In this case the parentheses tell the Perl parser that you intend list context
for the single variable $single_element. This is subtle, but now that you know
about it, the difference of amount context between these two statements
should be obvious:

my $scalar_context = find_chores();
my ($list_context) = find_chores();

Lists propagate list context to the expressions they contain. This often con-
fuses novices until they understand it. Both of these calls to find_chores() occur
in list context:

process_list_of_results(find_chores());

my %results = (
cheap_operation => $cheap_results,
expensive_operation => find_chores(), # OOPS!

);

Yes, initializing a hash (Hashes on page ?) with a list of values imposes list
context on find_chores. Use the scalar operator to impose scalar context:

my %results = (

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

cheap_operation => $cheap_results,
expensive_operation => scalar find_chores(),

);

Again, context can help you determine how much work a function should do.
In void context, find_chores() may legitimately do nothing. In scalar context, it
can find only the most important task. In list context, it must sort and return
the entire list.

Numeric, String, and Boolean Context
Perl’s other context—value context—influences how Perl interprets a piece of
data. Perl can figure out if you have a number or a string and convert data
between the two types. In exchange for not having to declare explicitly what
type of data a variable contains or a function produces, Perl’s value contexts
provide hints about how to treat that data.

Perl will coerce values to specific proper types (Coercion on page ?) depending
on the operators you use. For example, the eq operator tests that two values
contain equivalent string values:

say "Catastrophic crypto fail!" if $alice eq $bob;

You may have had a baffling experience where you know that the strings are
different, but they still compare the same:

my $alice = 'alice';
say "Catastrophic crypto fail!" if $alice == 'Bob';

The eq operator treats its operands as strings by enforcing string context on
them, but the == operator imposes numeric context. In numeric context, both
strings evaluate to 0 (Numeric Coercion on page ?). Be sure to use the
proper operator for your desired value context.

Boolean context occurs when you use a value in a conditional statement. In
the previous examples, if evaluated the results of the eq and == operators in
boolean context.

In rare circumstances, you may not be able to use the appropriate operator
to enforce value context. To force a numeric context, add zero to a variable.
To force a string context, concatenate a variable with the empty string. To
force a boolean context, double up the negation operator:

my $numeric_x = 0 + $x; # forces numeric context
my $stringy_x = '' . $x; # forces string context
my $boolean_x = !!$x; # forces boolean context

• Click HERE to purchase this book now. discuss

Context • 3

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Value contexts are easier to identify than amount contexts. Once you know
which operators provide which contexts (Operator Types on page ?), you’ll
rarely make mistakes.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

