
Extracted from:

Modern Perl, Fourth Edition

This PDF file contains pages extracted from Modern Perl, Fourth Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Modern Perl, Fourth Edition

chromatic

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-088-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2015

https://pragprog.com
rights@pragprog.com

Moose
Perl’s default object system is minimal but flexible. Its syntax is a little clunky,
and it exposes how an object system works. You can build great things on
top of it, but it doesn’t give you what many other languages do by default.

Moose is a complete object system for Perl. It’s a complete distribution available
from the CPAN—not a part of the core language but worth installing and using
regardless. Moose offers both a simpler way to use an object system and
advanced features of languages such as Smalltalk and Common Lisp.

Moose objects work with plain-vanilla Perl. Within your programs, you can
mix and match objects written with Perl’s default object system and Moose.

Moose Documentation

See Moose::Manual on the CPAN for comprehensive Moose documen-
tation.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Classes
A Moose object is a concrete instance of a class, which is a template
describing data and behavior specific to the object. A class generally belongs
to a package (Packages on page ?), which provides its name:

package Cat {
use Moose;

}

This Cat class appears to do nothing, but that’s all Moose needs to make a
class. You can create objects (or instances) of the Cat class with this syntax:

my $brad = Cat->new;
my $jack = Cat->new;

In the same way that this arrow operator dereferences a reference, it calls a
method on Cat.

Methods
A method is a function associated with a class. In the same way that a function
belongs to a namespace, a method belongs to a class.

When you call a method, you do so with an invocant. When you call new() on
Cat, the name of the class, Cat, is new()’s invocant. Think of this as sending a
message to a class: “do whatever new() does.” In this case, calling the new()
method—sending the new message—returns a new object of the Cat class.

When you call a method on an object, that object is the invocant:

my $choco = Cat->new;
$choco->sleep_on_keyboard;

A method’s first argument is its invocant ($self, by convention). Suppose a Cat
can meow():

package Cat {
use Moose;

sub meow {
my $self = shift;
say 'Meow!';

}
}

Now any Cat instance can wake you for its early morning feeding:

the cat always meows three times at 6 am
my $fuzzy_alarm = Cat->new;
$fuzzy_alarm->meow for 1 .. 3;

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Every object can have its own distinct data. Methods that read or write the
data of their invocants are instance methods; they depend on the presence of
an appropriate invocant to work correctly. Methods (such as meow()) that don’t
access instance data are class methods. You may invoke class methods on
classes and class and instance methods on instances, but you cannot invoke
instance methods on classes.

Class methods are effectively namespaced global functions. Without access
to instance data, they have few advantages over namespaced functions. Most
OO code uses instance methods to read and write instance data.

Constructors, which create instances, are class methods. When you declare
a Moose class, Moose provides a default constructor named new().

Attributes
Every Perl object is unique. Objects can contain private data associated with
each unique object—often called attributes, instance data, or object state.
You define an attribute by declaring it as part of the class:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
}

Moose exports the has() function for you to use to declare an attribute. In
English, this code reads “Cat objects have a name attribute. It’s read-only, and
it’s a string.” The first argument, 'name', is the attribute’s name. The is => 'ro'
pair of arguments declares that this attribute is read only, so you cannot
modify the attribute’s value after you’ve set it. Finally, the isa => 'Str' pair
declares that the value of this attribute can only be a String.

From this code Moose creates an accessor method named name() and allows
you to pass a name parameter to Cat’s constructor:

for my $name (qw(Tuxie Petunia Daisy)) {
my $cat = Cat->new(name => $name);
say "Created a cat for ", $cat->name;

}

Moose’s uses parentheses to separate attribute names and characteristics:

has 'name' => (is => 'ro', isa => 'Str');

This is equivalent to the following:

has('name', 'is', 'ro', 'isa', 'Str');

• Click HERE to purchase this book now. discuss

Moose • 7

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Moose’s approach works nicely for complex declarations:

has 'name' => (
is => 'ro',
isa => 'Str',

advanced Moose options; perldoc Moose
init_arg => undef,
lazy_build => 1,

);

But this book prefers a low-punctuation approach for simple declarations.
Choose the style that offers you the most clarity.

When an attribute declaration has a type, Moose will attempt to validate all
values assigned to that attribute. Sometimes this strictness is invaluable.
While Moose will complain if you try to set name to a value that isn’t a string,
attributes don’t require types. In that case, anything goes:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro';

}

my $invalid = Cat->new(name => 'bizarre', age => 'purple');

If you mark an attribute as readable and writable (with is => rw), Moose will
create a mutator method that can change that attribute’s value:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro', isa => 'Int';
has 'diet', is => 'rw';

}

my $fat = Cat->new(name => 'Fatty',
age => 8,
diet => 'Sea Treats');

say $fat->name, ' eats ', $fat->diet;

$fat->diet('Low Sodium Kitty Lo Mein');
say $fat->name, ' now eats ', $fat->diet;

An ro accessor used as a mutator will throw the exception Cannot assign a value
to a read-only accessor at

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Using ro or rw is a matter of design, convenience, and purity. Moose enforces
no single philosophy here. Some people suggest making all instance data ro
such that you must pass instance data into the constructor (Immutability on
page ?). In the Cat example, age() might still be an accessor, but the construc-
tor could take the year of the cat’s birth and calculate the age itself based on
the current year. This approach consolidates validation code and ensures
that all objects have valid data after creation.

This illustrates a subtle but important principle of object orientation. An
object contains related data and can perform behaviors with and on that data.
A class describes that data and those behaviors. You can have multiple
independent objects with separate instance data and treat all of those objects
the same way; they will behave differently depending on their instance data.

Encapsulation
Moose allows you to declare which attributes class instances possess (a cat
has a name) as well as the attributes of those attributes (you can name a cat
once and thereafter its name cannot change). Moose itself decides how to
store those attributes—you access them through accessors. This is encapsu-
lation: hiding the internal details of an object from external users of that
object.

Consider the aforementioned idea to change how Cats manage their ages by
passing in the year of the cat’s birth and calculating the age as needed:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';
has 'birth_year', is => 'ro', isa => 'Int';

sub age {
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year;
}

}

While the syntax for creating Cat objects has changed, the syntax for using
Cat objects has not. Outside of Cat, age() behaves as it always has. How it works
is a detail hidden inside the Cat class.

This change offers another advantage; a default attribute value will let users
construct a new Cat object without providing a birth year:

• Click HERE to purchase this book now. discuss

Moose • 9

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

}

The default keyword on an attribute uses a function reference (or a literal string
or number) that returns the default value for that attribute when constructing
a new object. If the code creating an object passes no constructor value for
that attribute, the object gets the default value:

my $kitten = Cat->new(name => 'Hugo');

And that kitten will have an age of 0 until next year.

Compatibility and APIs

Retain the old syntax for creating Cat objects by customizing the
generated Cat constructor to allow passing an age parameter. Cal-
culate birth_year from that. See perldoc Moose::Manual::Attributes.

Polymorphism

The real power of object orientation goes beyond classes and encapsulation.
A well-designed OO program can manage many types of data. When well-
designed classes encapsulate specific details of objects into the appropriate
places, something curious happens: the code often becomes less specific.

Moving the details of what the program knows about individual Cats (the
attributes) and what the program knows that Cats can do (the methods) into
the Cat class means that code that deals with Cat instances can happily ignore
how Cat does what it does.

Consider a function that displays details of an object:

sub show_vital_stats {
my $object = shift;
say 'My name is ', $object->name;
say 'I am ', $object->age;
say 'I eat ', $object->diet;

}

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

This function obviously works if you pass it a Cat object. It will also do the
right thing for any object with the appropriate three accessors, no matter
how that object provides those accessors and no matter what kind of object
it is—Cat, Caterpillar, or Catbird—or even if the class uses Moose at all.
show_vital_stats() cares that an invocant is valid only in that it supports three
methods, name(), age(), and diet(), which take no arguments and each return
something that can concatenate in a string context. Your code may have a
hundred different classes with no obvious relationship among them, but they
will all work with this function if they support the behavior it expects.

This property is polymorphism: you can substitute an object of one class for
an object of another class if they provide the same external interface.

Duck Typing

Some languages and environments require you to imply or declare
a formal relationship between two classes before allowing a pro-
gram to substitute instances for each other. Perl makes no such
requirement. You may treat any two instances with methods of
the same name as equivalent. Some people call this duck typing,
arguing that any object that can quack() is sufficiently duck-like
that you can treat it as a duck.

Without object polymorphism, enumerating a zoo’s worth of animals would
be tedious. Similarly, you may already start to see how calculating the age of
an ocelot or octopus should be the same as calculating the age of a Cat. Hold
that thought.

Of course, the mere existence of a method called name() or age() does not by
itself imply the behavior of that object. A Dog object may have an age(), which
is an accessor such that you can discover $rodney is 13 but $lucky is 8. A Cheese
object may have an age() method that lets you control how long to store
$cheddar to sharpen it. age() may be an accessor in one class but not in another:

how old is the cat?
my $years = $zeppie->age;

store the cheese in the warehouse for six months
$cheese->age;

Sometimes it’s useful to know what an object does and what that means.

• Click HERE to purchase this book now. discuss

Moose • 11

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Roles
A role is a named collection of behavior and state.1 Whereas a class organizes
behaviors and state into a template for objects, a role organizes a named
collection of behaviors and state. You can instantiate a class but not a role.
A role is something a class does.

Given an Animal that has an age and a Cheese that can age, one difference may
be that Animal does the LivingBeing role, while Cheese does the Storable role:

package LivingBeing {
use Moose::Role;
requires qw(name age diet);

}

The requires keyword provided by Moose::Role allows you to list methods that
this role requires of its composing classes. Anything that performs this role
must supply the name(), age(), and diet() methods. The Cat class must declare
that it performs the role:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

with 'LivingBeing';

sub age { ... }
}

The with line causes Moose to compose the LivingBeing role into the Cat class.
Composition ensures all of the attributes and methods of the role are part of
the class. LivingBeing requires any composing class to provide methods named
name(), age(), and diet(). Cat satisfies these constraints. If LivingBeing were composed
into a class that didn’t provide them, Moose would throw an exception.

Now all Cat instances will return a true value when queried if they provide the
LivingBeing role. Cheese objects should not:

say 'Alive!' if $fluffy->DOES('LivingBeing');
say 'Moldy!' if $cheese->DOES('LivingBeing');

1. Many of the ideas come from Smalltalk traits: http://scg.unibe.ch/research/traits

• 12

• Click HERE to purchase this book now. discuss

http://scg.unibe.ch/research/traits
http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

This design technique separates the capabilities of classes and objects from
the implementation of those classes and objects. As implied earlier, the birth
year calculation behavior of the Cat class could itself be a role:

package CalculateAge::From::BirthYear {
use Moose::Role;

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

sub age {
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year;
}

}

Extracting this role from Cat makes the useful behavior available to other
classes. Now Cat can compose both roles:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

with 'LivingBeing', 'CalculateAge::From::BirthYear';
}

The age() method of CalculateAge::From::BirthYear satisfies the requirement of the
LivingBeing role. Extracting the CalculateAge::From::BirthYear role has only changed
the details of how Cat calculates an age. It’s still a LivingBeing. Cat can choose
to implement its own age or get it from somewhere else. All that matters is
that it provides an age() that satisfies the LivingBeing constraint.

While polymorphism means that you can treat multiple objects with the same
behavior in the same way, allomorphism means that an object may implement
the same behavior in multiple ways. Pervasive allomorphism can reduce the
size of your classes and increase the amount of code shared between them.
It also allows you to name specific and discrete collections of behaviors—very
useful for testing for capabilities instead of implementations.

• Click HERE to purchase this book now. discuss

Moose • 13

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Roles and DOES()

When you compose a role into a class, the class and its instances will return
a true value when you call DOES() on them:

say 'This Cat is alive!' if $kitten->DOES('LivingBeing');

Order Matters!

The with keyword used to apply roles to a class must occur after
attribute declaration so that composition can identify any generat-
ed accessor methods. This is a side effect of the implementation
of Moose and not an intrinsic feature of roles.

Inheritance
Perl’s object system supports inheritance, which establishes a parent and
child relationship between two classes such that a child specializes its parent.
The child class behaves the same way as its parent—it has the same number
and types of attributes and can use the same methods. It may have additional
data and behavior, but you may substitute any instance of a child where code
expects its parent. In one sense, a subclass provides the role implied by the
existence of its parent class.

Consider a LightSource class that provides two public attributes (enabled and
candle_power) and two methods (light and extinguish):

package LightSource {
use Moose;

has 'candle_power', is => 'ro',
isa => 'Int',
default => 1;

has 'enabled', is => 'ro',
isa => 'Bool',
default => 0,
writer => '_set_enabled';

sub light {
my $self = shift;
$self->_set_enabled(1);

}

sub extinguish {
my $self = shift;
$self->_set_enabled(0);

}
}

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Note that enabled’s writer option creates a private accessor usable within the
class to set the value.

Roles versus Inheritance

Should you use roles or inheritance? Roles provide composition-
time safety, better type checking, better factoring of code, and
finer-grained control over names and behaviors, but inheritance
is more familiar to experienced developers of other languages. Use
inheritance when one class truly extends another. Use a role when
a class needs additional behavior, especially when that behavior
has a meaningful name.

Roles compare favorably to other design techniques such as mixins,
multiple inheritance, and monkeypatching.2

Inheritance and Attributes

A subclass of LightSource could define an industrial-strength super candle with
a hundred times the luminance:

package SuperCandle {
use Moose;

extends 'LightSource';

has '+candle_power', default => 100;
}

extends takes a list of class names to use as parents of the current class. If
that were the only line in this class, SuperCandle objects would behave in the
same ways as LightSource objects. A SuperCandle instance would have both the
candle_power and enabled attributes as well as the light() and extinguish() methods.

The + at the start of an attribute name (such as candle_power) indicates that
the current class does something special with that attribute. Here the super
candle overrides the default value of the light source, so any new SuperCandle
created has a light value of 100 regular candles.

When you invoke light() or extinguish() on a SuperCandle object, Perl will look in
the SuperCandle class for the method. If there’s no method by that name in the
child class, Perl will look at the parent class, then grandparent, and so on.
In this case, those methods are in the LightSource class.

Attribute inheritance works similarly (see perldoc Class::MOP).

2. http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html

• Click HERE to purchase this book now. discuss

Moose • 15

http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html
http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Method Dispatch Order

Perl’s dispatch strategy controls how Perl selects the appropriate method to
run for a method call. As you may have gathered from roles and polymorphism,
much of OO’s power comes from method dispatch.

Method dispatch order (or method resolution order or MRO) is obvious for single-
parent classes. Look in the object’s class, then its parent, and so on until you
find the method—or run out of parents. Classes that inherit from multiple
parents (multiple inheritance), such as a Hovercraft, which extends both Boat
and Car, require trickier dispatch. Reasoning about multiple inheritance is
complex, so avoid multiple inheritance when possible.

Perl uses a depth-first method resolution strategy. It searches the class of
the first named parent and all of that parent’s parents recursively before
searching the classes of the current class’s immediate parents. The mro
pragma (Pragmas on page ?) provides alternate strategies, including the C3
MRO strategy, which searches a given class’s immediate parents before
searching any of their parents.

See perldoc mro for more details.

Inheritance and Methods

As with attributes, subclasses may override methods. Imagine a light that
you cannot extinguish:

package Glowstick {
use Moose;

extends 'LightSource';

sub extinguish {}
}

Calling extinguish() on a glowstick does nothing, even though LightSource’s method
does something. Method dispatch will find the subclass’s method. You may
not have meant to do this. When you do, use Moose’s override to express your
intention clearly.

Within an overridden method, Moose’s super() allows you to call the overridden
method:

package LightSource::Cranky {
use Carp 'carp';
use Moose;

extends 'LightSource';

• 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

override light => sub {
my $self = shift;

carp "Can't light a lit LightSource!" if $self->enabled;

super();
};

override extinguish => sub {
my $self = shift;

carp "Can't extinguish unlit LightSource!" unless $self->enabled;

super();
};

}

This subclass adds a warning when trying to light or extinguish a light source
that already has the current state. The super() function dispatches to the
nearest parent’s implementation of the current method, per the normal Perl
method resolution order. (See perldoc Moose::Manual::MethodModifiers for more dis-
patch options.)

Inheritance and isa()

Perl’s isa() method returns true if its invocant is or extends a named class.
That invocant may be the name of a class or an instance of an object:

say 'Looks like a LightSource' if $sconce->isa('LightSource');

say 'Hominidae do not glow' unless $chimpy->isa('LightSource');

Moose and Perl OO
Moose provides many features beyond Perl’s default OO system. Although
you can build everything you get with Moose yourself (Blessed References on
page ?) or cobble it together with a series of CPAN distributions, Moose is
worth using. It’s a coherent whole, with documentation, a mature and attentive
development community, and a history of successful use in important projects.

Moose provides constructors, destructors, accessors, and encapsulation. You
must do the work of declaring what you want, and you get safe and useful
code in return. Moose objects can extend and work with objects from the
vanilla Perl system.

While Moose is not a part of the Perl core, its popularity ensures that it’s
available on many OS distributions. Perl distributions such as Strawberry

• Click HERE to purchase this book now. discuss

Moose • 17

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

Perl and ActivePerl also include it. Even though Moose is a CPAN module and
not a core library, its cleanliness and simplicity make it essential to modern
Perl programming.

Moose also allows metaprogramming—manipulating your objects through
Moose itself. If you’ve ever wondered which methods are available on a class
or an object or which attributes an object supports, this information is
available:

my $metaclass = Monkey::Pants->meta;

say 'Monkey::Pants instances have the attributes:';
say $_->name for $metaclass->get_all_attributes;
say 'Monkey::Pants instances support the methods:';
say $_->fully_qualified_name for $metaclass->get_all_methods;

You can even see which classes extend a given class:

my $metaclass = Monkey->meta;

say 'Monkey is the superclass of:';
say $_ for $metaclass->subclasses;

See perldoc Class::MOP::Class for more information about metaclass operations
and perldoc Class::MOP for Moose metaprogramming information.

Moose and its meta-object protocol (or MOP) offers the possibility of a better
syntax for declaring and working with classes and objects in Perl. This is valid
code:

use MooseX::Declare;

role LivingBeing { requires qw(name age diet) }

role CalculateAge::From::BirthYear {
has 'birth_year',

is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

method age {
return (localtime)[5] + 1900 - $self->birth_year;

}
}

class Cat with LivingBeing with CalculateAge::From::BirthYear {
has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

}

• 18

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

The MooseX::Declare CPAN distribution adds the class, role, and method keywords
to reduce the amount of boilerplate necessary to write good object-oriented
code in Perl. Note specifically the declarative nature of this example, as well
as the lack of my $self = shift; in age().

Another good option is Moops, which allows you to write the following:

use Moops;

role LivingBeing {
requires qw(name age diet);

}

role CalculateAge::From::BirthYear :ro {
has 'birth_year',

isa => Int,
default => sub { (localtime)[5] + 1900 };

method age {
return (localtime)[5] + 1900 - $self->birth_year;

}
}

class Cat with LivingBeing with CalculateAge::From::BirthYear :ro {
has 'name', isa => Str;
has 'diet', is => 'rw';

}

The Svelte Alces

Moose isn’t a small library, but it’s powerful. The most popular
alternative is Moo, a slimmer library that’s almost completely
compatible with Moose. Many projects migrate some or all code
to Moo, where speed or memory use is an issue. Start with Moose;
then see if Moo makes sense for you.

• Click HERE to purchase this book now. discuss

Moose • 19

http://pragprog.com/titles/swperl
http://forums.pragprog.com/forums/swperl

